Strategies for Controlling Emission Anisotropy in Lead Halide Perovskite Emitters for LED Outcoupling Enhancement

发光二极管 材料科学 钙钛矿(结构) 光电子学 量子效率 各向异性 光子 电致发光 偶极子 超晶格 自发辐射 半导体 光学 纳米技术 物理 化学 激光器 量子力学 结晶学 图层(电子)
作者
Tommaso Marcato,Sudhir Kumar,Chih‐Jen Shih
出处
期刊:Advanced Materials [Wiley]
标识
DOI:10.1002/adma.202413622
摘要

Abstract In the last decade, momentous progress in lead halide perovskite (LHP) light‐emitting diodes (LEDs) is witnessed as their external quantum efficiency (η ext ) has increased from 0.1 to more than 30%. Indeed, perovskite LEDs (PeLEDs), which can in principle reach 100% internal quantum efficiency as they are not limited by the spin‐statistics, are reaching their full potential and approaching the theoretical limit in terms of device efficiency. However, ≈70% to 85% of total generated photons are trapped within the devices through the dissipation pathways of the substrate, waveguide, and evanescent modes. To this end, numerous extrinsic and intrinsic light‐outcoupling strategies are studied to enhance light‐outcoupling efficiency (η out ). At the outset, various external and internal light outcoupling techniques are reviewed with specific emphasis on emission anisotropy and its role on η out . In particular, the device η ext can be enhanced by up to 50%, taking advantage of the increased probability for photons outcoupled to air by effectively inducing horizontally oriented emission transition dipole moments (TDM) in the perovskite emitters. The role of the TDM orientation in PeLED performance and the factors allowing its rational manipulation are reviewed extensively. Furthermore, this account presents an in‐depth discussion about the effects of the self‐assembly of LHP colloidal nanocrystals (NCs) into superlattices on the NC emission anisotropy and optical properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助佘余采纳,获得10
刚刚
田様应助正直芫采纳,获得10
1秒前
四糸乃完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
2秒前
董冬冬应助tengfei采纳,获得10
3秒前
3秒前
鹤九完成签到,获得积分10
3秒前
JamesPei应助科研启动采纳,获得10
3秒前
完美世界应助sissisue采纳,获得10
4秒前
hh完成签到,获得积分20
5秒前
6秒前
瞿绝悟发布了新的文献求助30
6秒前
专注采枫完成签到,获得积分10
6秒前
山山而川发布了新的文献求助30
6秒前
7秒前
小小发布了新的文献求助10
8秒前
冲冲完成签到,获得积分20
8秒前
9秒前
充电宝应助foregan采纳,获得10
9秒前
小蘑菇应助kepwake采纳,获得10
9秒前
10秒前
科研通AI6应助娇气的芷巧采纳,获得10
11秒前
shiyin发布了新的文献求助10
11秒前
沉静乾完成签到,获得积分10
11秒前
计划明天炸地球完成签到,获得积分10
12秒前
12秒前
佘余发布了新的文献求助10
13秒前
牧夜白完成签到,获得积分10
13秒前
13秒前
冲冲发布了新的文献求助10
14秒前
壮观听白完成签到,获得积分10
15秒前
大钱哥发布了新的文献求助10
15秒前
FashionBoy应助专注采枫采纳,获得10
16秒前
17秒前
iamzhangly30hyit完成签到,获得积分10
17秒前
tengfei完成签到,获得积分10
17秒前
17秒前
英姑应助chen采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652998
求助须知:如何正确求助?哪些是违规求助? 4789083
关于积分的说明 15062620
捐赠科研通 4811651
什么是DOI,文献DOI怎么找? 2574020
邀请新用户注册赠送积分活动 1529772
关于科研通互助平台的介绍 1488418