Evaluation of Temporomandibular Joint Disc Displacement with Magnetic Resonance Imaging Based Radiomics Analysis

人工智能 随机森林 支持向量机 磁共振成像 颞下颌关节 计算机科学 特征选择 逻辑回归 模式识别(心理学) 机器学习 峰度 数学 医学 口腔正畸科 放射科 统计
作者
Hazal Duyan Yüksel,Kaan Orhan,Burcu Evlice,Ömer Kaya
出处
期刊:Dentomaxillofacial Radiology [Oxford University Press]
卷期号:54 (1): 19-27 被引量:1
标识
DOI:10.1093/dmfr/twae066
摘要

Abstract Objectives The purpose of this study was to propose a machine learning model and assess its ability to classify temporomandibular joint (TMJ) disc displacements on MR T1-weighted and proton density-weighted images. Methods This retrospective cohort study included 180 TMJs from 90 patients with TMJ signs and symptoms. A radiomics platform was used to extract imaging features of disc displacements. Thereafter, different machine learning algorithms and logistic regression were implemented on radiomics features for feature selection, classification, and prediction. The radiomics features included first-order statistics, size- and shape-based features, and texture features. Six classifiers, including logistic regression, random forest, decision tree, k-nearest neighbours (KNN), XGBoost, and support vector machine were used for a model building which could predict the TMJ disc displacements. The performance of models was evaluated by sensitivity, specificity, and ROC curve. Results KNN classifier was found to be the most optimal machine learning model for prediction of TMJ disc displacements. The AUC, sensitivity, and specificity for the training set were 0.944, 0.771, 0.918 for normal, anterior disc displacement with reduction (ADDwR) and anterior disc displacement without reduction (ADDwoR) while testing set were 0.913, 0.716, and 1 for normal, ADDwR, and ADDwoR. For TMJ disc displacements, skewness, root mean squared, kurtosis, minimum, large area low grey level emphasis, grey level non-uniformity, and long-run high grey level emphasis, were selected as optimal features. Conclusions This study has proposed a machine learning model by KNN analysis on TMJ MR images, which can be used for TMJ disc displacements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
杨振发布了新的文献求助10
刚刚
1秒前
leisure完成签到,获得积分20
1秒前
小笨猪完成签到,获得积分10
2秒前
务实映之完成签到,获得积分10
2秒前
毛彬完成签到,获得积分20
2秒前
吃零食吃不下饭完成签到,获得积分10
2秒前
芜6完成签到,获得积分10
3秒前
墨扬完成签到,获得积分10
3秒前
应天亦发布了新的文献求助10
3秒前
爆米花应助Helly采纳,获得10
3秒前
鱼乐乐发布了新的文献求助10
4秒前
自由若剑发布了新的文献求助10
4秒前
wanci应助笑点低的不采纳,获得10
4秒前
aladi1011完成签到,获得积分10
4秒前
4秒前
烟酒生应助这个真不懂采纳,获得10
5秒前
ranran发布了新的文献求助10
5秒前
6秒前
peace完成签到,获得积分10
7秒前
田...完成签到,获得积分10
7秒前
7秒前
沄霄之上发布了新的文献求助10
7秒前
MIDANN发布了新的文献求助10
7秒前
7秒前
飘逸鸵鸟完成签到,获得积分10
8秒前
xiawanren00完成签到,获得积分10
8秒前
8秒前
9秒前
大秦帝国完成签到,获得积分10
9秒前
夏轩FromHard完成签到,获得积分10
9秒前
yn发布了新的文献求助10
9秒前
William完成签到 ,获得积分10
10秒前
10秒前
happiness完成签到 ,获得积分10
10秒前
谨慎纸飞机完成签到,获得积分10
10秒前
yao完成签到,获得积分10
10秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582