Evaluation of Temporomandibular Joint Disc Displacement with Magnetic Resonance Imaging Based Radiomics Analysis

人工智能 随机森林 支持向量机 磁共振成像 颞下颌关节 计算机科学 特征选择 逻辑回归 模式识别(心理学) 机器学习 峰度 数学 医学 口腔正畸科 放射科 统计
作者
Hazal Duyan Yüksel,Kaan Orhan,Burcu Evlice,Ömer Kaya
出处
期刊:Dentomaxillofacial Radiology [British Institute of Radiology]
卷期号:54 (1): 19-27 被引量:6
标识
DOI:10.1093/dmfr/twae066
摘要

Abstract Objectives The purpose of this study was to propose a machine learning model and assess its ability to classify temporomandibular joint (TMJ) disc displacements on MR T1-weighted and proton density-weighted images. Methods This retrospective cohort study included 180 TMJs from 90 patients with TMJ signs and symptoms. A radiomics platform was used to extract imaging features of disc displacements. Thereafter, different machine learning algorithms and logistic regression were implemented on radiomics features for feature selection, classification, and prediction. The radiomics features included first-order statistics, size- and shape-based features, and texture features. Six classifiers, including logistic regression, random forest, decision tree, k-nearest neighbours (KNN), XGBoost, and support vector machine were used for a model building which could predict the TMJ disc displacements. The performance of models was evaluated by sensitivity, specificity, and ROC curve. Results KNN classifier was found to be the most optimal machine learning model for prediction of TMJ disc displacements. The AUC, sensitivity, and specificity for the training set were 0.944, 0.771, 0.918 for normal, anterior disc displacement with reduction (ADDwR) and anterior disc displacement without reduction (ADDwoR) while testing set were 0.913, 0.716, and 1 for normal, ADDwR, and ADDwoR. For TMJ disc displacements, skewness, root mean squared, kurtosis, minimum, large area low grey level emphasis, grey level non-uniformity, and long-run high grey level emphasis, were selected as optimal features. Conclusions This study has proposed a machine learning model by KNN analysis on TMJ MR images, which can be used for TMJ disc displacements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
李健的粉丝团团长应助YZ采纳,获得10
2秒前
2秒前
11发布了新的文献求助10
2秒前
FashionBoy应助Ryan采纳,获得10
2秒前
优雅夜柳关注了科研通微信公众号
3秒前
233发布了新的文献求助10
3秒前
3秒前
英俊的铭应助Isaiah采纳,获得30
3秒前
001发布了新的文献求助20
3秒前
zzz发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
七七完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
MyXu完成签到,获得积分10
6秒前
YanamiAnna发布了新的文献求助30
6秒前
6秒前
6秒前
8秒前
8秒前
8秒前
zz发布了新的文献求助10
8秒前
9秒前
一期一会发布了新的文献求助10
9秒前
9秒前
Hello应助小小果妈采纳,获得10
9秒前
零柒发布了新的文献求助10
9秒前
陆程文完成签到,获得积分10
10秒前
于是乎完成签到,获得积分10
10秒前
10秒前
egomarine完成签到,获得积分10
10秒前
星辰大海应助Toby采纳,获得10
11秒前
12秒前
cosimax发布了新的文献求助20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769365
求助须知:如何正确求助?哪些是违规求助? 5579538
关于积分的说明 15421436
捐赠科研通 4903042
什么是DOI,文献DOI怎么找? 2638103
邀请新用户注册赠送积分活动 1586002
关于科研通互助平台的介绍 1541075