Evaluation of Temporomandibular Joint Disc Displacement with Magnetic Resonance Imaging Based Radiomics Analysis

人工智能 随机森林 支持向量机 磁共振成像 颞下颌关节 计算机科学 特征选择 逻辑回归 模式识别(心理学) 机器学习 峰度 数学 医学 口腔正畸科 放射科 统计
作者
Hazal Duyan Yüksel,Kaan Orhan,Burcu Evlice,Ömer Kaya
出处
期刊:Dentomaxillofacial Radiology [Oxford University Press]
卷期号:54 (1): 19-27 被引量:1
标识
DOI:10.1093/dmfr/twae066
摘要

Abstract Objectives The purpose of this study was to propose a machine learning model and assess its ability to classify temporomandibular joint (TMJ) disc displacements on MR T1-weighted and proton density-weighted images. Methods This retrospective cohort study included 180 TMJs from 90 patients with TMJ signs and symptoms. A radiomics platform was used to extract imaging features of disc displacements. Thereafter, different machine learning algorithms and logistic regression were implemented on radiomics features for feature selection, classification, and prediction. The radiomics features included first-order statistics, size- and shape-based features, and texture features. Six classifiers, including logistic regression, random forest, decision tree, k-nearest neighbours (KNN), XGBoost, and support vector machine were used for a model building which could predict the TMJ disc displacements. The performance of models was evaluated by sensitivity, specificity, and ROC curve. Results KNN classifier was found to be the most optimal machine learning model for prediction of TMJ disc displacements. The AUC, sensitivity, and specificity for the training set were 0.944, 0.771, 0.918 for normal, anterior disc displacement with reduction (ADDwR) and anterior disc displacement without reduction (ADDwoR) while testing set were 0.913, 0.716, and 1 for normal, ADDwR, and ADDwoR. For TMJ disc displacements, skewness, root mean squared, kurtosis, minimum, large area low grey level emphasis, grey level non-uniformity, and long-run high grey level emphasis, were selected as optimal features. Conclusions This study has proposed a machine learning model by KNN analysis on TMJ MR images, which can be used for TMJ disc displacements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Akim应助董可以采纳,获得10
1秒前
丘比特应助内秀采纳,获得10
1秒前
2秒前
3秒前
桀桀桀发布了新的文献求助10
5秒前
想躺平的咸鱼人完成签到,获得积分10
6秒前
8秒前
8秒前
8秒前
方法发布了新的文献求助10
8秒前
9秒前
董可以完成签到,获得积分10
10秒前
乐乐应助苏苏采纳,获得10
12秒前
赵萌发布了新的文献求助10
12秒前
清風折柳发布了新的文献求助10
12秒前
13秒前
我的南方发布了新的文献求助10
13秒前
14秒前
晕晕发布了新的文献求助10
16秒前
相濡以沫发布了新的文献求助10
19秒前
麦当劳薯条冰激凌完成签到,获得积分10
19秒前
内秀发布了新的文献求助10
19秒前
19秒前
桀桀桀完成签到,获得积分10
21秒前
科研通AI5应助白洛玄采纳,获得10
22秒前
我的南方完成签到,获得积分10
23秒前
充电宝应助yaohuimin采纳,获得30
23秒前
万能图书馆应助yaxianzhi采纳,获得10
25秒前
Owen应助家迎松采纳,获得10
25秒前
cxy完成签到 ,获得积分10
29秒前
Sun完成签到,获得积分10
32秒前
浔城游侠完成签到,获得积分10
34秒前
bacteria完成签到,获得积分10
34秒前
爱读爱看完成签到,获得积分10
35秒前
TT完成签到 ,获得积分10
35秒前
共享精神应助相濡以沫采纳,获得10
37秒前
SYLH应助科研小民工采纳,获得10
38秒前
39秒前
sun完成签到,获得积分10
40秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736110
求助须知:如何正确求助?哪些是违规求助? 3279874
关于积分的说明 10017385
捐赠科研通 2996546
什么是DOI,文献DOI怎么找? 1644134
邀请新用户注册赠送积分活动 781787
科研通“疑难数据库(出版商)”最低求助积分说明 749462