Evaluation of Temporomandibular Joint Disc Displacement with Magnetic Resonance Imaging Based Radiomics Analysis

人工智能 随机森林 支持向量机 磁共振成像 颞下颌关节 计算机科学 特征选择 逻辑回归 模式识别(心理学) 机器学习 峰度 数学 医学 口腔正畸科 放射科 统计
作者
Hazal Duyan Yüksel,Kaan Orhan,Burcu Evlice,Ömer Kaya
出处
期刊:Dentomaxillofacial Radiology [British Institute of Radiology]
标识
DOI:10.1093/dmfr/twae066
摘要

Abstract Objectives The purpose of this study was to propose a machine-learning model and assess its ability to classify temporomandibular joint (TMJ) disc displacements on magnetic resonance (MR) T1-weighted and PD-weighted images. Methods This retrospective cohort study included 180 TMJs from 90 patients with TMJ signs and symptoms. A Radiomics platform was used to extract imaging features of disc displacements. Thereafter, different machine learning algorithms and logistic regression were implemented on radiomic features for feature selection, classification, and prediction. The radiomic features included first-order statistic, size- and shape-based features and texture features. Six classifiers, including logistic regression, random forest, decision tree, k-nearest neighbors (KNN), XGBoost and support vector machine were used for a model building which could predict the TMJ disc displacements. The performance of models was evaluated by sensitivity, specificity and ROC curve. Results KNN classifier was found to be the most optimal machine learning model for prediction of TMJ disc displacements. The AUC, sensitivity, and specificity for the training set were 0.944, 0.771, 0.918 for normal, anterior disc displacement with reduction (ADDwR) and anterior disc displacement without reduction (ADDwoR) while testing set were 0.913, 0.716, 1 for normal, ADDwR and ADDwoR. For TMJ disc displacements, skewness, root mean squared, kurtosis, minumum, large area low gray level emphasis, gray level non-uniformity and long run high gray level emphasis, were selected as optimal features. Conclusions This study has proposed a machine learning model by KNN analysis on TMJ MR images, which can be used to TMJ disc displacements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玖梦恨别离完成签到 ,获得积分10
刚刚
852应助冷酷的雁菡采纳,获得10
刚刚
1秒前
wei发布了新的文献求助10
2秒前
是琳不是林完成签到,获得积分20
2秒前
吃三口茄子完成签到,获得积分10
3秒前
hchen完成签到 ,获得积分10
4秒前
wrm发布了新的文献求助30
6秒前
蜗牛二世完成签到 ,获得积分10
7秒前
慕青应助Irey采纳,获得30
7秒前
7秒前
8秒前
9秒前
10秒前
10秒前
阔达书雪发布了新的文献求助10
10秒前
11秒前
12秒前
爱学习的瑞瑞子完成签到 ,获得积分10
12秒前
12秒前
Jason完成签到 ,获得积分10
12秒前
冷酷的雁菡完成签到,获得积分20
13秒前
13秒前
糖糖发布了新的文献求助10
14秒前
16秒前
天真若魔完成签到,获得积分10
17秒前
17秒前
华仔应助文静的可仁采纳,获得10
19秒前
敏感的归头完成签到,获得积分10
22秒前
22秒前
25秒前
小赞芽完成签到,获得积分10
26秒前
26秒前
叩桥不渡完成签到,获得积分10
29秒前
杳鸢应助研友_LN7bvn采纳,获得20
30秒前
UA发布了新的文献求助10
30秒前
互助遵法尚德应助Anar采纳,获得10
32秒前
QXR完成签到,获得积分10
32秒前
玫瑰羊完成签到,获得积分10
33秒前
淡淡乐巧发布了新的文献求助10
34秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180810
求助须知:如何正确求助?哪些是违规求助? 2831014
关于积分的说明 7982642
捐赠科研通 2492884
什么是DOI,文献DOI怎么找? 1329918
科研通“疑难数据库(出版商)”最低求助积分说明 635836
版权声明 602954