Accurate Spatial Heterogeneity Dissection and Gene Regulation Interpretation for Spatial Transcriptomics using Dual Graph Contrastive Learning

计算机科学 可解释性 空间分析 人工智能 图形 图嵌入 空间语境意识 聚类分析 模式识别(心理学) 计算生物学 嵌入 生物 理论计算机科学 数学 统计
作者
Zhuohan Yu,Yuning Yang,Xingjian Chen,Ka‐Chun Wong,Zhaolei Zhang,Yuming Zhao,Xiangtao Li
出处
期刊:Advanced Science [Wiley]
标识
DOI:10.1002/advs.202410081
摘要

Abstract Recent advances in spatial transcriptomics have enabled simultaneous preservation of high‐throughput gene expression profiles and the spatial context, enabling high‐resolution exploration of distinct regional characterization in tissue. To effectively understand the underlying biological mechanisms within tissue microenvironments, there is a requisite for methods that can accurately capture external spatial heterogeneity and interpret internal gene regulation from spatial transcriptomics data. However, current methods for region identification often lack the simultaneous characterizing of spatial structure and gene regulation, thereby limiting the ability of spatial dissection and gene interpretation. Here, stDCL is developed, a dual graph contrastive learning method to identify spatial domains and interpret gene regulation in spatial transcriptomics data. stDCL adaptively incorporates gene expression data and spatial information via a graph embedding autoencoder, thereby preserving critical information within the latent embedding representations. In addition, dual graph contrastive learning is proposed to train the model, ensuring that the latent embedding representation closely resembles the actual spatial distribution and exhibits cluster similarity. Benchmarking stDCL against other state‐of‐the‐art clustering methods using complex cortex datasets demonstrates its superior accuracy and effectiveness in identifying spatial domains. Our analysis of the imputation matrices generated by stDCL reveals its capability to reconstruct spatial hierarchical structures and refine differential expression assessment. Furthermore, it is demonstrated that the versatility of stDCL in interpretability of gene regulation, spatial heterogeneity at high resolution, and embryonic developmental patterns. In addition, it is also showed that stDCL can successfully annotate disease‐associated astrocyte subtypes in Alzheimer's disease and unravel multiple relevant pathways and regulatory mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gjm发布了新的文献求助10
2秒前
2秒前
2秒前
情怀应助陈陈采纳,获得10
2秒前
2秒前
2秒前
Lucas应助科研通管家采纳,获得10
3秒前
3秒前
小狗熊吖i应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
4秒前
朱建军应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
刘鹏宇发布了新的文献求助10
5秒前
一一完成签到,获得积分10
6秒前
6秒前
Joe完成签到,获得积分10
7秒前
Owen应助风趣的凝雁采纳,获得10
7秒前
xxxllllll完成签到,获得积分10
7秒前
辛辛发布了新的文献求助10
8秒前
8秒前
8秒前
11秒前
不安豁完成签到,获得积分10
11秒前
xiaoyao完成签到,获得积分10
12秒前
13秒前
英俊的铭应助浮云采纳,获得10
13秒前
13秒前
如意的刚应助务实凡灵采纳,获得10
13秒前
qaq发布了新的文献求助10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979479
求助须知:如何正确求助?哪些是违规求助? 3523421
关于积分的说明 11217607
捐赠科研通 3260944
什么是DOI,文献DOI怎么找? 1800264
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807126