Accurate Spatial Heterogeneity Dissection and Gene Regulation Interpretation for Spatial Transcriptomics using Dual Graph Contrastive Learning

计算机科学 可解释性 空间分析 人工智能 图形 图嵌入 空间语境意识 聚类分析 模式识别(心理学) 计算生物学 嵌入 生物 理论计算机科学 数学 统计
作者
Zhuohan Yu,Yuning Yang,Xingjian Chen,Ka‐Chun Wong,Zhaolei Zhang,Yuming Zhao,Xiangtao Li
出处
期刊:Advanced Science [Wiley]
标识
DOI:10.1002/advs.202410081
摘要

Abstract Recent advances in spatial transcriptomics have enabled simultaneous preservation of high‐throughput gene expression profiles and the spatial context, enabling high‐resolution exploration of distinct regional characterization in tissue. To effectively understand the underlying biological mechanisms within tissue microenvironments, there is a requisite for methods that can accurately capture external spatial heterogeneity and interpret internal gene regulation from spatial transcriptomics data. However, current methods for region identification often lack the simultaneous characterizing of spatial structure and gene regulation, thereby limiting the ability of spatial dissection and gene interpretation. Here, stDCL is developed, a dual graph contrastive learning method to identify spatial domains and interpret gene regulation in spatial transcriptomics data. stDCL adaptively incorporates gene expression data and spatial information via a graph embedding autoencoder, thereby preserving critical information within the latent embedding representations. In addition, dual graph contrastive learning is proposed to train the model, ensuring that the latent embedding representation closely resembles the actual spatial distribution and exhibits cluster similarity. Benchmarking stDCL against other state‐of‐the‐art clustering methods using complex cortex datasets demonstrates its superior accuracy and effectiveness in identifying spatial domains. Our analysis of the imputation matrices generated by stDCL reveals its capability to reconstruct spatial hierarchical structures and refine differential expression assessment. Furthermore, it is demonstrated that the versatility of stDCL in interpretability of gene regulation, spatial heterogeneity at high resolution, and embryonic developmental patterns. In addition, it is also showed that stDCL can successfully annotate disease‐associated astrocyte subtypes in Alzheimer's disease and unravel multiple relevant pathways and regulatory mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Songcheng应助通天塔采纳,获得80
刚刚
所所应助怕孤单的凡松采纳,获得10
刚刚
1秒前
靜心完成签到 ,获得积分10
1秒前
lucky完成签到,获得积分10
1秒前
赘婿应助euphoria采纳,获得10
2秒前
wxy发布了新的文献求助10
2秒前
qunqing3完成签到,获得积分10
2秒前
Juujuucc完成签到,获得积分10
3秒前
Ava应助阮楷瑞采纳,获得10
4秒前
真实的钢铁侠完成签到,获得积分20
5秒前
xiaolang2004完成签到,获得积分10
6秒前
Biophysics发布了新的文献求助10
6秒前
科研通AI2S应助vici采纳,获得10
7秒前
zzz关注了科研通微信公众号
7秒前
8秒前
8秒前
孙思琪完成签到,获得积分10
9秒前
9秒前
鹿谷波完成签到,获得积分10
9秒前
9秒前
10秒前
落后的诗柳应助liang采纳,获得30
11秒前
Henry应助xiaolang2004采纳,获得200
12秒前
SciGPT应助彪壮的绮烟采纳,获得10
12秒前
桐桐应助ANEWKID采纳,获得10
12秒前
Clovis33完成签到 ,获得积分10
12秒前
蒋50完成签到 ,获得积分10
12秒前
MJT10086完成签到,获得积分10
12秒前
12秒前
大个应助陈居居采纳,获得10
13秒前
jrd24完成签到,获得积分10
14秒前
洁净的尔白完成签到,获得积分10
14秒前
阮楷瑞发布了新的文献求助10
14秒前
Dd完成签到,获得积分10
14秒前
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得30
14秒前
所所应助科研通管家采纳,获得10
14秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180500
求助须知:如何正确求助?哪些是违规求助? 2830796
关于积分的说明 7981033
捐赠科研通 2492477
什么是DOI,文献DOI怎么找? 1329555
科研通“疑难数据库(出版商)”最低求助积分说明 635745
版权声明 602954