亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accurate Spatial Heterogeneity Dissection and Gene Regulation Interpretation for Spatial Transcriptomics using Dual Graph Contrastive Learning

计算机科学 可解释性 空间分析 人工智能 图形 图嵌入 空间语境意识 聚类分析 模式识别(心理学) 计算生物学 嵌入 生物 理论计算机科学 数学 统计
作者
Zhuohan Yu,Yuning Yang,Xingjian Chen,Ka‐Chun Wong,Zhaolei Zhang,Yuming Zhao,Xiangtao Li
出处
期刊:Advanced Science [Wiley]
标识
DOI:10.1002/advs.202410081
摘要

Abstract Recent advances in spatial transcriptomics have enabled simultaneous preservation of high‐throughput gene expression profiles and the spatial context, enabling high‐resolution exploration of distinct regional characterization in tissue. To effectively understand the underlying biological mechanisms within tissue microenvironments, there is a requisite for methods that can accurately capture external spatial heterogeneity and interpret internal gene regulation from spatial transcriptomics data. However, current methods for region identification often lack the simultaneous characterizing of spatial structure and gene regulation, thereby limiting the ability of spatial dissection and gene interpretation. Here, stDCL is developed, a dual graph contrastive learning method to identify spatial domains and interpret gene regulation in spatial transcriptomics data. stDCL adaptively incorporates gene expression data and spatial information via a graph embedding autoencoder, thereby preserving critical information within the latent embedding representations. In addition, dual graph contrastive learning is proposed to train the model, ensuring that the latent embedding representation closely resembles the actual spatial distribution and exhibits cluster similarity. Benchmarking stDCL against other state‐of‐the‐art clustering methods using complex cortex datasets demonstrates its superior accuracy and effectiveness in identifying spatial domains. Our analysis of the imputation matrices generated by stDCL reveals its capability to reconstruct spatial hierarchical structures and refine differential expression assessment. Furthermore, it is demonstrated that the versatility of stDCL in interpretability of gene regulation, spatial heterogeneity at high resolution, and embryonic developmental patterns. In addition, it is also showed that stDCL can successfully annotate disease‐associated astrocyte subtypes in Alzheimer's disease and unravel multiple relevant pathways and regulatory mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李金文应助爱学习的曼卉采纳,获得10
5秒前
9秒前
xiao发布了新的文献求助10
14秒前
pp完成签到,获得积分10
16秒前
mochalv123完成签到 ,获得积分10
21秒前
ying818k完成签到 ,获得积分10
28秒前
blenx完成签到,获得积分10
29秒前
brwen完成签到,获得积分10
43秒前
48秒前
zyl发布了新的文献求助10
52秒前
yb完成签到,获得积分10
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
小邸应助科研通管家采纳,获得10
1分钟前
小邸应助科研通管家采纳,获得10
1分钟前
zzz发布了新的文献求助10
1分钟前
weibo完成签到,获得积分10
1分钟前
ckyyds完成签到 ,获得积分10
1分钟前
Matberry完成签到 ,获得积分10
1分钟前
朴素羊完成签到 ,获得积分10
1分钟前
呆萌冰彤完成签到 ,获得积分10
1分钟前
所所应助汤人雄采纳,获得10
1分钟前
lyz完成签到,获得积分10
2分钟前
lyu完成签到,获得积分10
2分钟前
科目三应助白芷当归采纳,获得10
2分钟前
科研通AI6应助聪慧夜云采纳,获得30
2分钟前
芜衡落砂完成签到,获得积分10
2分钟前
Orange应助JJJJ采纳,获得10
2分钟前
2分钟前
2分钟前
白芷当归发布了新的文献求助10
2分钟前
JJJJ发布了新的文献求助10
2分钟前
桐桐应助聪慧雪糕采纳,获得10
2分钟前
白芷当归完成签到,获得积分20
2分钟前
2分钟前
2分钟前
默默雪旋完成签到 ,获得积分10
3分钟前
聪慧雪糕发布了新的文献求助10
3分钟前
科研小白发布了新的文献求助10
3分钟前
3分钟前
汤人雄发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581559
求助须知:如何正确求助?哪些是违规求助? 3999491
关于积分的说明 12381352
捐赠科研通 3674182
什么是DOI,文献DOI怎么找? 2024857
邀请新用户注册赠送积分活动 1058733
科研通“疑难数据库(出版商)”最低求助积分说明 945497