Accurate Spatial Heterogeneity Dissection and Gene Regulation Interpretation for Spatial Transcriptomics using Dual Graph Contrastive Learning

计算机科学 可解释性 空间分析 人工智能 图形 图嵌入 空间语境意识 聚类分析 模式识别(心理学) 计算生物学 嵌入 生物 理论计算机科学 数学 统计
作者
Zhuohan Yu,Yuning Yang,Xingjian Chen,Ka‐Chun Wong,Zhaolei Zhang,Yuming Zhao,Xiangtao Li
出处
期刊:Advanced Science [Wiley]
标识
DOI:10.1002/advs.202410081
摘要

Abstract Recent advances in spatial transcriptomics have enabled simultaneous preservation of high‐throughput gene expression profiles and the spatial context, enabling high‐resolution exploration of distinct regional characterization in tissue. To effectively understand the underlying biological mechanisms within tissue microenvironments, there is a requisite for methods that can accurately capture external spatial heterogeneity and interpret internal gene regulation from spatial transcriptomics data. However, current methods for region identification often lack the simultaneous characterizing of spatial structure and gene regulation, thereby limiting the ability of spatial dissection and gene interpretation. Here, stDCL is developed, a dual graph contrastive learning method to identify spatial domains and interpret gene regulation in spatial transcriptomics data. stDCL adaptively incorporates gene expression data and spatial information via a graph embedding autoencoder, thereby preserving critical information within the latent embedding representations. In addition, dual graph contrastive learning is proposed to train the model, ensuring that the latent embedding representation closely resembles the actual spatial distribution and exhibits cluster similarity. Benchmarking stDCL against other state‐of‐the‐art clustering methods using complex cortex datasets demonstrates its superior accuracy and effectiveness in identifying spatial domains. Our analysis of the imputation matrices generated by stDCL reveals its capability to reconstruct spatial hierarchical structures and refine differential expression assessment. Furthermore, it is demonstrated that the versatility of stDCL in interpretability of gene regulation, spatial heterogeneity at high resolution, and embryonic developmental patterns. In addition, it is also showed that stDCL can successfully annotate disease‐associated astrocyte subtypes in Alzheimer's disease and unravel multiple relevant pathways and regulatory mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞奔的鱼发布了新的文献求助10
刚刚
wuta完成签到,获得积分10
刚刚
开心就吃猕猴桃完成签到,获得积分10
1秒前
怕黑的翠绿完成签到 ,获得积分10
1秒前
1秒前
老实幻姬发布了新的文献求助10
1秒前
Active完成签到,获得积分10
1秒前
不会447发布了新的文献求助10
1秒前
聪明藏今完成签到,获得积分10
2秒前
2秒前
Octopus发布了新的文献求助30
2秒前
神勇的煎蛋完成签到,获得积分10
3秒前
张朵朵完成签到 ,获得积分20
3秒前
迷你的隶完成签到,获得积分10
3秒前
羽言完成签到,获得积分10
3秒前
黄晃晃完成签到,获得积分10
4秒前
YY发布了新的文献求助10
4秒前
小二郎应助WN采纳,获得10
4秒前
Hello应助123567采纳,获得10
4秒前
复杂千亦完成签到,获得积分10
4秒前
charon完成签到,获得积分20
4秒前
阔达小天鹅应助yhgyjgfgft采纳,获得10
4秒前
可可西里完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
卜哥完成签到,获得积分10
5秒前
柳贯一完成签到,获得积分10
5秒前
黎簇完成签到 ,获得积分10
5秒前
chenbin1105完成签到,获得积分10
5秒前
今后应助老路采纳,获得10
5秒前
CC完成签到,获得积分10
6秒前
无辜的夏山完成签到,获得积分10
6秒前
7秒前
7秒前
Adamfreex完成签到 ,获得积分10
7秒前
今后应助caizhonglun采纳,获得10
7秒前
7秒前
蓝色斑马完成签到,获得积分10
7秒前
虚幻小凡完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4902185
求助须知:如何正确求助?哪些是违规求助? 4181228
关于积分的说明 12980171
捐赠科研通 3946514
什么是DOI,文献DOI怎么找? 2164652
邀请新用户注册赠送积分活动 1182883
关于科研通互助平台的介绍 1089373