清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Accurate Spatial Heterogeneity Dissection and Gene Regulation Interpretation for Spatial Transcriptomics using Dual Graph Contrastive Learning

计算机科学 可解释性 空间分析 人工智能 图形 图嵌入 空间语境意识 聚类分析 模式识别(心理学) 计算生物学 嵌入 生物 理论计算机科学 数学 统计
作者
Zhuohan Yu,Yuning Yang,Xingjian Chen,Ka‐Chun Wong,Zhaolei Zhang,Yuming Zhao,Xiangtao Li
出处
期刊:Advanced Science [Wiley]
标识
DOI:10.1002/advs.202410081
摘要

Abstract Recent advances in spatial transcriptomics have enabled simultaneous preservation of high‐throughput gene expression profiles and the spatial context, enabling high‐resolution exploration of distinct regional characterization in tissue. To effectively understand the underlying biological mechanisms within tissue microenvironments, there is a requisite for methods that can accurately capture external spatial heterogeneity and interpret internal gene regulation from spatial transcriptomics data. However, current methods for region identification often lack the simultaneous characterizing of spatial structure and gene regulation, thereby limiting the ability of spatial dissection and gene interpretation. Here, stDCL is developed, a dual graph contrastive learning method to identify spatial domains and interpret gene regulation in spatial transcriptomics data. stDCL adaptively incorporates gene expression data and spatial information via a graph embedding autoencoder, thereby preserving critical information within the latent embedding representations. In addition, dual graph contrastive learning is proposed to train the model, ensuring that the latent embedding representation closely resembles the actual spatial distribution and exhibits cluster similarity. Benchmarking stDCL against other state‐of‐the‐art clustering methods using complex cortex datasets demonstrates its superior accuracy and effectiveness in identifying spatial domains. Our analysis of the imputation matrices generated by stDCL reveals its capability to reconstruct spatial hierarchical structures and refine differential expression assessment. Furthermore, it is demonstrated that the versatility of stDCL in interpretability of gene regulation, spatial heterogeneity at high resolution, and embryonic developmental patterns. In addition, it is also showed that stDCL can successfully annotate disease‐associated astrocyte subtypes in Alzheimer's disease and unravel multiple relevant pathways and regulatory mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
24秒前
尹沐完成签到 ,获得积分10
36秒前
量子星尘发布了新的文献求助10
37秒前
量子星尘发布了新的文献求助10
56秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
失眠店员发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Barid完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
hazel完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
nicolaslcq完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
binyao2024完成签到,获得积分10
3分钟前
3分钟前
3分钟前
cadcae完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
华仔应助我为科研狂采纳,获得10
3分钟前
SciGPT应助水兰色采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
1250241652完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
back you up应助科研通管家采纳,获得30
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
guan完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661095
求助须知:如何正确求助?哪些是违规求助? 3222233
关于积分的说明 9744081
捐赠科研通 2931862
什么是DOI,文献DOI怎么找? 1605234
邀请新用户注册赠送积分活动 757780
科研通“疑难数据库(出版商)”最低求助积分说明 734538