Concurrent Ischemic Lesion Age Estimation and Segmentation of CT Brain Using a Transformer-Based Network

计算机科学 杠杆(统计) 人工智能 分割 深度学习 分位数 病变 医学影像学 机器学习 缺血性中风 模式识别(心理学) 医学 统计 病理 数学 缺血 心脏病学
作者
Adam Marcus,Paul Bentley,Daniel Rueckert
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (12): 3464-3473 被引量:8
标识
DOI:10.1109/tmi.2023.3287361
摘要

The cornerstone of stroke care is expedient management that varies depending on the time since stroke onset. Consequently, clinical decision making is centered on accurate knowledge of timing and often requires a radiologist to interpret Computed Tomography (CT) of the brain to confirm the occurrence and age of an event. These tasks are particularly challenging due to the subtle expression of acute ischemic lesions and the dynamic nature of their appearance. Automation efforts have not yet applied deep learning to estimate lesion age and treated these two tasks independently, so, have overlooked their inherent complementary relationship. To leverage this, we propose a novel end-to-end multi-task transformer-based network optimized for concurrent segmentation and age estimation of cerebral ischemic lesions. By utilizing gated positional self-attention and CT-specific data augmentation, the proposed method can capture long-range spatial dependencies while maintaining its ability to be trained from scratch under low-data regimes commonly found in medical imaging. Furthermore, to better combine multiple predictions, we incorporate uncertainty by utilizing quantile loss to facilitate estimating a probability density function of lesion age. The effectiveness of our model is then extensively evaluated on a clinical dataset consisting of 776 CT images from two medical centers. Experimental results demonstrate that our method obtains promising performance, with an area under the curve (AUC) of 0.933 for classifying lesion ages ≤ 4.5 hours compared to 0.858 using a conventional approach, and outperforms task-specific state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饼子完成签到 ,获得积分10
刚刚
好好好发布了新的文献求助10
刚刚
刚刚
路人发布了新的文献求助30
刚刚
刚刚
科目三应助顾建瑜采纳,获得10
刚刚
个性的曼卉关注了科研通微信公众号
1秒前
东东发布了新的文献求助10
1秒前
2秒前
汉堡包发布了新的文献求助10
3秒前
Orange应助LIULIYUAN采纳,获得30
3秒前
4秒前
彭于晏应助gong采纳,获得10
4秒前
kity发布了新的文献求助10
4秒前
科研通AI6应助万古采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
wanci应助大宁采纳,获得10
6秒前
田様应助asdf采纳,获得10
7秒前
Lucas应助糊涂的雪枫采纳,获得10
7秒前
怕黑凤妖完成签到 ,获得积分10
7秒前
pylchm完成签到,获得积分10
8秒前
徐涵完成签到 ,获得积分10
8秒前
科研通AI6应助高玉峰采纳,获得10
8秒前
11发布了新的文献求助10
10秒前
SciGPT应助GoldenLee采纳,获得10
11秒前
Yan完成签到,获得积分10
11秒前
科研通AI6应助fcyyc采纳,获得10
11秒前
Unshouable完成签到,获得积分10
11秒前
12秒前
畅快的觅风完成签到,获得积分20
12秒前
不呐呐完成签到,获得积分10
13秒前
洁净不评完成签到,获得积分10
13秒前
14秒前
14秒前
chen完成签到 ,获得积分10
14秒前
15秒前
15秒前
15秒前
甘蓝型油菜完成签到,获得积分10
16秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615218
求助须知:如何正确求助?哪些是违规求助? 4700091
关于积分的说明 14906605
捐赠科研通 4741474
什么是DOI,文献DOI怎么找? 2547964
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473781