Concurrent Ischemic Lesion Age Estimation and Segmentation of CT Brain Using a Transformer-Based Network

计算机科学 杠杆(统计) 人工智能 分割 深度学习 分位数 病变 医学影像学 机器学习 缺血性中风 模式识别(心理学) 医学 统计 病理 数学 缺血 心脏病学
作者
Adam Marcus,Paul Bentley,Daniel Rueckert
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (12): 3464-3473 被引量:5
标识
DOI:10.1109/tmi.2023.3287361
摘要

The cornerstone of stroke care is expedient management that varies depending on the time since stroke onset. Consequently, clinical decision making is centered on accurate knowledge of timing and often requires a radiologist to interpret Computed Tomography (CT) of the brain to confirm the occurrence and age of an event. These tasks are particularly challenging due to the subtle expression of acute ischemic lesions and the dynamic nature of their appearance. Automation efforts have not yet applied deep learning to estimate lesion age and treated these two tasks independently, so, have overlooked their inherent complementary relationship. To leverage this, we propose a novel end-to-end multi-task transformer-based network optimized for concurrent segmentation and age estimation of cerebral ischemic lesions. By utilizing gated positional self-attention and CT-specific data augmentation, the proposed method can capture long-range spatial dependencies while maintaining its ability to be trained from scratch under low-data regimes commonly found in medical imaging. Furthermore, to better combine multiple predictions, we incorporate uncertainty by utilizing quantile loss to facilitate estimating a probability density function of lesion age. The effectiveness of our model is then extensively evaluated on a clinical dataset consisting of 776 CT images from two medical centers. Experimental results demonstrate that our method obtains promising performance, with an area under the curve (AUC) of 0.933 for classifying lesion ages ≤ 4.5 hours compared to 0.858 using a conventional approach, and outperforms task-specific state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
erfc完成签到,获得积分10
2秒前
kitty发布了新的文献求助10
3秒前
Yolo发布了新的文献求助10
3秒前
Mr发布了新的文献求助10
4秒前
蝶步韶华发布了新的文献求助10
5秒前
gdh完成签到,获得积分10
5秒前
6秒前
Banbor2021完成签到,获得积分10
7秒前
lkx完成签到 ,获得积分10
9秒前
伊伊发布了新的文献求助10
10秒前
11秒前
12秒前
15秒前
15秒前
16秒前
Joy发布了新的文献求助10
17秒前
小马甲应助嫩嫩采纳,获得10
18秒前
小二郎应助贺兰采纳,获得10
18秒前
手机应助科研通管家采纳,获得10
19秒前
SciGPT应助科研通管家采纳,获得10
19秒前
Jasper应助科研通管家采纳,获得10
19秒前
隐形曼青应助科研通管家采纳,获得10
19秒前
19秒前
yar应助科研通管家采纳,获得10
19秒前
yar应助科研通管家采纳,获得10
19秒前
手机应助科研通管家采纳,获得10
19秒前
李爱国应助科研通管家采纳,获得10
19秒前
19秒前
笑笑完成签到,获得积分10
19秒前
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
19秒前
Ava应助科研通管家采纳,获得10
19秒前
Ganlou应助伶俐的书南采纳,获得10
20秒前
伊伊完成签到,获得积分10
20秒前
MQ发布了新的文献求助10
21秒前
orixero应助摆烂采纳,获得10
21秒前
U9A完成签到,获得积分10
21秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328053
求助须知:如何正确求助?哪些是违规求助? 2958192
关于积分的说明 8589449
捐赠科研通 2636443
什么是DOI,文献DOI怎么找? 1442995
科研通“疑难数据库(出版商)”最低求助积分说明 668470
邀请新用户注册赠送积分活动 655696