FreeformNet: fast and automatic generation of multiple-solution freeform imaging systems enabled by deep learning

计算机科学 一般化 分类 集合(抽象数据类型) 深度学习 系统设计 镜头(地质) 航程(航空) 领域(数学) 人工智能 计算机工程 数学 工程类 石油工程 软件工程 数学分析 复合材料 情报检索 材料科学 程序设计语言 纯数学
作者
Boyu Mao,Tong Yang,Huiming Xu,Wenchen Chen,Dewen Cheng,Yongtian Wang
出处
期刊:Photonics Research [The Optical Society]
卷期号:11 (8): 1408-1408 被引量:13
标识
DOI:10.1364/prj.492938
摘要

Using freeform optical surfaces in lens design can lead to much higher system specifications and performance while significantly reducing volume and weight. However, because of the complexity of freeform surfaces, freeform optical design using traditional methods requires extensive human effort and sufficient design experience, while other design methods have limitations in design efficiency, simplicity, and versatility. Deep learning can solve these issues by summarizing design knowledge and applying it to design tasks with different system and structure parameters. We propose a deep-learning framework for designing freeform imaging systems. We generate the data set automatically using a combined sequential and random system evolution method. We combine supervised learning and unsupervised learning to train the network so that it has good generalization ability for a wide range of system and structure parameter values. The generated network FreeformNet enables fast generation (less than 0.003 s per system) of multiple-solution systems after we input the design requirements, including the system and structure parameters. We can filter and sort solutions based on a given criterion and use them as good starting points for quick final optimization (several seconds for systems with small or moderate field-of-view in general). The proposed framework presents a revolutionary approach to the lens design of freeform or generalized imaging systems, thus significantly reducing the time and effort expended on optical design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
研友_rLmrgn应助科研通管家采纳,获得10
1秒前
大宝君应助科研通管家采纳,获得20
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得30
1秒前
1秒前
大模型应助科研通管家采纳,获得10
1秒前
FF完成签到,获得积分10
1秒前
大个应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
葉芊羽发布了新的文献求助10
2秒前
乐观小之应助sunzhuxi采纳,获得10
4秒前
4秒前
健忘的曼青关注了科研通微信公众号
7秒前
耶耶完成签到,获得积分10
9秒前
脑洞疼应助zhogwe采纳,获得10
9秒前
11秒前
11秒前
含糊的钢笔完成签到,获得积分10
11秒前
11秒前
大个应助朴实的纸飞机采纳,获得10
11秒前
邓佳鑫Alan应助俊逸青柏采纳,获得10
12秒前
13秒前
14秒前
swich完成签到,获得积分10
15秒前
852应助Bai采纳,获得10
15秒前
所所应助kendrick677采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735868
求助须知:如何正确求助?哪些是违规求助? 5363199
关于积分的说明 15331638
捐赠科研通 4879999
什么是DOI,文献DOI怎么找? 2622459
邀请新用户注册赠送积分活动 1571448
关于科研通互助平台的介绍 1528243