Online Distributed Learning-Based Load-Aware Heterogeneous Vehicular Edge Computing

计算机科学 边缘计算 GSM演进的增强数据速率 分布式计算 计算机网络 人工智能
作者
Lei Zhu,Zhizhong Zhang,Lilan Liu,Linlin Feng,Peng Lin,Yu Zhang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (15): 17350-17365 被引量:3
标识
DOI:10.1109/jsen.2023.3283413
摘要

Vehicular edge computing (VEC) is an emerging enabler in strengthening driving efficiency and traffic safety. However, both performance bottlenecks and low-resource efficiency of heterogeneous edge servers arise concurrently because of the inhomogeneous load distribution among the servers. Further, the unsaturated infrastructure coverage situation can deteriorate the concurrent issues. Although transmitting raw task data with large sizes among heterogeneous edge servers can relieve the concurrent issues, it distinctly degrades the core network's efficiency, especially during rush hours. Meanwhile, it cannot settle the unsaturated coverage situation. To relieve the concurrent issues without degrading the core network's efficiency, we introduce an aerial relay station (ARS) that can flexibly relay vehicular tasks to nearby heterogeneous edge servers. The long-term task-scheduling problem without any prior environment knowledge for the considered vehicular edge system is crucial but still up in the air. We formulate the system latency minimization problem as a partially observable stochastic game (POSG). Then a model-free multiagent reinforcement learning algorithm is developed to search the real-time load-aware scheduling policy. Besides, we design a practical factor named offloading latency gain to assist the training process of the learning algorithm. Simulation experiments show that our proposed algorithm (PA) can better exploit idle computation resources of heterogeneous edge infrastructures and significantly reduce the average system latency up to 15%–20% over existing algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气的小兔子完成签到 ,获得积分10
刚刚
从南到北完成签到,获得积分10
刚刚
王昱旻发布了新的文献求助10
刚刚
彭于彦祖应助海阔天空采纳,获得50
1秒前
坦率抽屉完成签到 ,获得积分10
2秒前
超帅傲白完成签到,获得积分10
2秒前
时尚初柳应助diar采纳,获得30
3秒前
Jovid完成签到,获得积分10
3秒前
4秒前
zzz完成签到,获得积分10
5秒前
现代的诗槐应助吕布采纳,获得10
5秒前
王达庆完成签到,获得积分10
5秒前
ark861023发布了新的文献求助10
6秒前
2420574910完成签到,获得积分10
6秒前
紧张的三问完成签到 ,获得积分10
6秒前
陈小马完成签到,获得积分10
7秒前
无心的青寒完成签到,获得积分10
7秒前
Lucas应助Leohp采纳,获得10
7秒前
陈军应助Kuta采纳,获得20
7秒前
xfy完成签到,获得积分10
7秒前
肥陈完成签到,获得积分10
7秒前
8秒前
燕山堂发布了新的文献求助10
9秒前
9秒前
10秒前
月月完成签到,获得积分10
10秒前
Sunshine1997应助珑仔采纳,获得10
10秒前
喜悦含莲发布了新的文献求助10
10秒前
10秒前
小黄完成签到 ,获得积分10
11秒前
贺万万发布了新的文献求助10
11秒前
科研通AI2S应助sylvia采纳,获得10
11秒前
Gleaming完成签到,获得积分10
11秒前
努力向上的小刘完成签到,获得积分10
11秒前
阿德里亚诺完成签到,获得积分10
12秒前
胜道发布了新的文献求助10
13秒前
chenqi完成签到,获得积分10
13秒前
ntrip完成签到,获得积分10
13秒前
靓丽的采白完成签到,获得积分10
14秒前
111发布了新的文献求助10
14秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261895
求助须知:如何正确求助?哪些是违规求助? 2902601
关于积分的说明 8320986
捐赠科研通 2572525
什么是DOI,文献DOI怎么找? 1397741
科研通“疑难数据库(出版商)”最低求助积分说明 653851
邀请新用户注册赠送积分活动 632341