Delineation of clinical target volume and organs at risk in cervical cancer radiotherapy by deep learning networks

宫颈癌 医学 豪斯多夫距离 核医学 直肠 放射治疗 癌症 人工智能 计算机科学 放射科 外科 内科学
作者
Miao Tian,Hongqiu Wang,Xingang Liu,Yuyun Ye,Ganlu Ouyang,Yali Shen,Zhiping Li,Xin Wang,Shaozhi Wu
出处
期刊:Medical Physics [Wiley]
卷期号:50 (10): 6354-6365 被引量:10
标识
DOI:10.1002/mp.16468
摘要

Delineation of the clinical target volume (CTV) and organs-at-risk (OARs) is important in cervical cancer radiotherapy. But it is generally labor-intensive, time-consuming, and subjective. This paper proposes a parallel-path attention fusion network (PPAF-net) to overcome these disadvantages in the delineation task.The PPAF-net utilizes both the texture and structure information of CTV and OARs by employing a U-Net network to capture the high-level texture information, and an up-sampling and down-sampling (USDS) network to capture the low-level structure information to accentuate the boundaries of CTV and OARs. Multi-level features extracted from both networks are then fused together through an attention module to generate the delineation result.The dataset contains 276 computed tomography (CT) scans of patients with cervical cancer of staging IB-IIA. The images are provided by the West China Hospital of Sichuan University. Simulation results demonstrate that PPAF-net performs favorably on the delineation of the CTV and OARs (e.g., rectum, bladder and etc.) and achieves the state-of-the-art delineation accuracy, respectively, for the CTV and OARs. In terms of the Dice Similarity Coefficient (DSC) and the Hausdorff Distance (HD), 88.61% and 2.25 cm for the CTV, 92.27% and 0.73 cm for the rectum, 96.74% and 0.68 cm for the bladder, 96.38% and 0.65 cm for the left kidney, 96.79% and 0.63 cm for the right kidney, 93.42% and 0.52 cm for the left femoral head, 93.69% and 0.51 cm for the right femoral head, 87.53% and 1.07 cm for the small intestine, and 91.50% and 0.84 cm for the spinal cord.The proposed automatic delineation network PPAF-net performs well on CTV and OARs segmentation tasks, which has great potential for reducing the burden of radiation oncologists and increasing the accuracy of delineation. In future, radiation oncologists from the West China Hospital of Sichuan University will further evaluate the results of network delineation, making this method helpful in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fei完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
小狒狒发布了新的文献求助10
刚刚
淡定访枫发布了新的文献求助10
刚刚
xiamu发布了新的文献求助10
刚刚
明亮元菱完成签到,获得积分10
1秒前
小胖卷毛完成签到,获得积分10
1秒前
Itazu完成签到,获得积分10
1秒前
XMY147305完成签到,获得积分10
2秒前
祝你勇敢完成签到,获得积分0
3秒前
Dlan完成签到,获得积分0
3秒前
4秒前
吹风机完成签到,获得积分10
4秒前
乐乐应助阿治采纳,获得10
4秒前
4秒前
111111完成签到,获得积分10
5秒前
健忘的小懒虫完成签到,获得积分10
5秒前
6秒前
愿你安好不离笑完成签到,获得积分10
6秒前
蔺景轩完成签到 ,获得积分10
6秒前
张益达完成签到,获得积分10
7秒前
Cheny完成签到 ,获得积分10
7秒前
7秒前
8秒前
华仔应助淡定访枫采纳,获得10
8秒前
康丽发布了新的文献求助10
9秒前
Aster发布了新的文献求助10
9秒前
Yuanchaoyi完成签到,获得积分20
9秒前
Viki完成签到,获得积分10
9秒前
毛毛完成签到,获得积分20
10秒前
踏实语海完成签到,获得积分10
10秒前
戊烷完成签到,获得积分10
10秒前
阔达的海完成签到,获得积分10
10秒前
11秒前
番茄炒西红柿完成签到,获得积分10
11秒前
冷静灵竹完成签到,获得积分10
11秒前
余喆完成签到,获得积分10
12秒前
Yuanchaoyi发布了新的文献求助10
12秒前
李天乐发布了新的文献求助10
12秒前
金元宝完成签到,获得积分10
12秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118837
求助须知:如何正确求助?哪些是违规求助? 4324693
关于积分的说明 13473527
捐赠科研通 4157793
什么是DOI,文献DOI怎么找? 2278607
邀请新用户注册赠送积分活动 1280375
关于科研通互助平台的介绍 1219167