已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Delineation of clinical target volume and organs at risk in cervical cancer radiotherapy by deep learning networks

宫颈癌 医学 豪斯多夫距离 核医学 直肠 放射治疗 癌症 人工智能 计算机科学 放射科 外科 内科学
作者
Miao Tian,Hongqiu Wang,Xingang Liu,Yuyun Ye,Ganlu Ouyang,Yali Shen,Zhiping Li,Xin Wang,Shaozhi Wu
出处
期刊:Medical Physics [Wiley]
卷期号:50 (10): 6354-6365 被引量:7
标识
DOI:10.1002/mp.16468
摘要

Delineation of the clinical target volume (CTV) and organs-at-risk (OARs) is important in cervical cancer radiotherapy. But it is generally labor-intensive, time-consuming, and subjective. This paper proposes a parallel-path attention fusion network (PPAF-net) to overcome these disadvantages in the delineation task.The PPAF-net utilizes both the texture and structure information of CTV and OARs by employing a U-Net network to capture the high-level texture information, and an up-sampling and down-sampling (USDS) network to capture the low-level structure information to accentuate the boundaries of CTV and OARs. Multi-level features extracted from both networks are then fused together through an attention module to generate the delineation result.The dataset contains 276 computed tomography (CT) scans of patients with cervical cancer of staging IB-IIA. The images are provided by the West China Hospital of Sichuan University. Simulation results demonstrate that PPAF-net performs favorably on the delineation of the CTV and OARs (e.g., rectum, bladder and etc.) and achieves the state-of-the-art delineation accuracy, respectively, for the CTV and OARs. In terms of the Dice Similarity Coefficient (DSC) and the Hausdorff Distance (HD), 88.61% and 2.25 cm for the CTV, 92.27% and 0.73 cm for the rectum, 96.74% and 0.68 cm for the bladder, 96.38% and 0.65 cm for the left kidney, 96.79% and 0.63 cm for the right kidney, 93.42% and 0.52 cm for the left femoral head, 93.69% and 0.51 cm for the right femoral head, 87.53% and 1.07 cm for the small intestine, and 91.50% and 0.84 cm for the spinal cord.The proposed automatic delineation network PPAF-net performs well on CTV and OARs segmentation tasks, which has great potential for reducing the burden of radiation oncologists and increasing the accuracy of delineation. In future, radiation oncologists from the West China Hospital of Sichuan University will further evaluate the results of network delineation, making this method helpful in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助jiabaoyu采纳,获得10
1秒前
2秒前
3秒前
3秒前
4秒前
Orange应助李昶采纳,获得10
7秒前
lishunjun发布了新的文献求助30
7秒前
CodeCraft应助火星上的寒风采纳,获得10
7秒前
apollo3232发布了新的文献求助10
9秒前
10秒前
三杯酒好完成签到,获得积分10
10秒前
冲n完成签到 ,获得积分10
11秒前
11秒前
11秒前
天天快乐应助小钵子甜酒采纳,获得10
11秒前
11秒前
依克发布了新的文献求助10
13秒前
jiabaoyu发布了新的文献求助10
15秒前
17秒前
恰恰发布了新的文献求助30
18秒前
18秒前
852应助dpp采纳,获得10
19秒前
19秒前
赘婿应助寒冷的白桃采纳,获得10
19秒前
jiabaoyu完成签到,获得积分10
21秒前
lishunjun完成签到,获得积分10
22秒前
李昶发布了新的文献求助10
25秒前
bang269发布了新的文献求助10
25秒前
26秒前
巫元菱发布了新的文献求助10
26秒前
chenchen完成签到,获得积分20
26秒前
27秒前
29秒前
笑忘书发布了新的文献求助10
31秒前
结实的荷发布了新的文献求助10
32秒前
32秒前
MLL发布了新的文献求助10
33秒前
34秒前
Orange应助李昶采纳,获得10
36秒前
千帆完成签到 ,获得积分10
36秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125744
求助须知:如何正确求助?哪些是违规求助? 2776037
关于积分的说明 7728973
捐赠科研通 2431507
什么是DOI,文献DOI怎么找? 1292095
科研通“疑难数据库(出版商)”最低求助积分说明 622375
版权声明 600380