Delineation of clinical target volume and organs at risk in cervical cancer radiotherapy by deep learning networks

宫颈癌 医学 豪斯多夫距离 核医学 直肠 放射治疗 癌症 人工智能 计算机科学 放射科 外科 内科学
作者
Miao Tian,Hongqiu Wang,Xingang Liu,Yuyun Ye,Ganlu Ouyang,Yali Shen,Zhiping Li,Xin Wang,Shaozhi Wu
出处
期刊:Medical Physics [Wiley]
卷期号:50 (10): 6354-6365 被引量:10
标识
DOI:10.1002/mp.16468
摘要

Delineation of the clinical target volume (CTV) and organs-at-risk (OARs) is important in cervical cancer radiotherapy. But it is generally labor-intensive, time-consuming, and subjective. This paper proposes a parallel-path attention fusion network (PPAF-net) to overcome these disadvantages in the delineation task.The PPAF-net utilizes both the texture and structure information of CTV and OARs by employing a U-Net network to capture the high-level texture information, and an up-sampling and down-sampling (USDS) network to capture the low-level structure information to accentuate the boundaries of CTV and OARs. Multi-level features extracted from both networks are then fused together through an attention module to generate the delineation result.The dataset contains 276 computed tomography (CT) scans of patients with cervical cancer of staging IB-IIA. The images are provided by the West China Hospital of Sichuan University. Simulation results demonstrate that PPAF-net performs favorably on the delineation of the CTV and OARs (e.g., rectum, bladder and etc.) and achieves the state-of-the-art delineation accuracy, respectively, for the CTV and OARs. In terms of the Dice Similarity Coefficient (DSC) and the Hausdorff Distance (HD), 88.61% and 2.25 cm for the CTV, 92.27% and 0.73 cm for the rectum, 96.74% and 0.68 cm for the bladder, 96.38% and 0.65 cm for the left kidney, 96.79% and 0.63 cm for the right kidney, 93.42% and 0.52 cm for the left femoral head, 93.69% and 0.51 cm for the right femoral head, 87.53% and 1.07 cm for the small intestine, and 91.50% and 0.84 cm for the spinal cord.The proposed automatic delineation network PPAF-net performs well on CTV and OARs segmentation tasks, which has great potential for reducing the burden of radiation oncologists and increasing the accuracy of delineation. In future, radiation oncologists from the West China Hospital of Sichuan University will further evaluate the results of network delineation, making this method helpful in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小豆完成签到,获得积分10
1秒前
1秒前
2秒前
wulalala完成签到,获得积分10
2秒前
舍予发布了新的文献求助10
3秒前
3秒前
cupric应助一只鲨呱采纳,获得20
3秒前
3秒前
传奇3应助乔钰涵采纳,获得10
3秒前
3秒前
焜少完成签到,获得积分10
4秒前
甜橙汁发布了新的文献求助10
4秒前
科研通AI5应助李丽冰采纳,获得10
5秒前
科研小扒菜完成签到,获得积分10
5秒前
明理的茹妖完成签到 ,获得积分10
5秒前
Os1发布了新的文献求助10
6秒前
小雨哥发布了新的文献求助10
6秒前
Eux关闭了Eux文献求助
6秒前
佳雪发布了新的文献求助10
6秒前
CipherSage应助wsws采纳,获得10
6秒前
Sam完成签到,获得积分10
7秒前
7秒前
7秒前
超速完成签到,获得积分20
7秒前
田様应助Carly采纳,获得10
7秒前
7秒前
苦逼发布了新的文献求助10
7秒前
天天科研完成签到,获得积分10
8秒前
8秒前
Haoyun完成签到,获得积分10
9秒前
风风关注了科研通微信公众号
9秒前
孟儿完成签到 ,获得积分10
10秒前
11秒前
11秒前
11秒前
柚子街发布了新的文献求助10
12秒前
时荒完成签到,获得积分10
12秒前
13秒前
13秒前
fzh发布了新的文献求助30
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
Practical Invisalign Mechanics: Crowding 500
Practical Invisalign Mechanics: Deep Bite and Class II Correction 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4955995
求助须知:如何正确求助?哪些是违规求助? 4217870
关于积分的说明 13125924
捐赠科研通 4000394
什么是DOI,文献DOI怎么找? 2189352
邀请新用户注册赠送积分活动 1204448
关于科研通互助平台的介绍 1116326