Delineation of clinical target volume and organs at risk in cervical cancer radiotherapy by deep learning networks

宫颈癌 医学 豪斯多夫距离 核医学 直肠 放射治疗 癌症 人工智能 计算机科学 放射科 外科 内科学
作者
Miao Tian,Hongqiu Wang,Xingang Liu,Yuyun Ye,Ganlu Ouyang,Yali Shen,Zhiping Li,Xin Wang,Shaozhi Wu
出处
期刊:Medical Physics [Wiley]
卷期号:50 (10): 6354-6365 被引量:10
标识
DOI:10.1002/mp.16468
摘要

Delineation of the clinical target volume (CTV) and organs-at-risk (OARs) is important in cervical cancer radiotherapy. But it is generally labor-intensive, time-consuming, and subjective. This paper proposes a parallel-path attention fusion network (PPAF-net) to overcome these disadvantages in the delineation task.The PPAF-net utilizes both the texture and structure information of CTV and OARs by employing a U-Net network to capture the high-level texture information, and an up-sampling and down-sampling (USDS) network to capture the low-level structure information to accentuate the boundaries of CTV and OARs. Multi-level features extracted from both networks are then fused together through an attention module to generate the delineation result.The dataset contains 276 computed tomography (CT) scans of patients with cervical cancer of staging IB-IIA. The images are provided by the West China Hospital of Sichuan University. Simulation results demonstrate that PPAF-net performs favorably on the delineation of the CTV and OARs (e.g., rectum, bladder and etc.) and achieves the state-of-the-art delineation accuracy, respectively, for the CTV and OARs. In terms of the Dice Similarity Coefficient (DSC) and the Hausdorff Distance (HD), 88.61% and 2.25 cm for the CTV, 92.27% and 0.73 cm for the rectum, 96.74% and 0.68 cm for the bladder, 96.38% and 0.65 cm for the left kidney, 96.79% and 0.63 cm for the right kidney, 93.42% and 0.52 cm for the left femoral head, 93.69% and 0.51 cm for the right femoral head, 87.53% and 1.07 cm for the small intestine, and 91.50% and 0.84 cm for the spinal cord.The proposed automatic delineation network PPAF-net performs well on CTV and OARs segmentation tasks, which has great potential for reducing the burden of radiation oncologists and increasing the accuracy of delineation. In future, radiation oncologists from the West China Hospital of Sichuan University will further evaluate the results of network delineation, making this method helpful in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈完成签到,获得积分10
刚刚
米饭辣椒发布了新的文献求助10
1秒前
e任思发布了新的文献求助10
1秒前
2秒前
共享精神应助淡淡凌珍采纳,获得10
2秒前
玛斯特尔完成签到,获得积分10
3秒前
liang发布了新的文献求助10
4秒前
gyn0762完成签到,获得积分10
6秒前
Orange应助正无穷采纳,获得10
6秒前
7秒前
菲菲完成签到 ,获得积分10
7秒前
大知闲闲完成签到 ,获得积分10
7秒前
8秒前
烂漫的苑睐完成签到,获得积分20
8秒前
8秒前
8秒前
hywel完成签到,获得积分10
10秒前
10秒前
10秒前
周杰发布了新的文献求助10
11秒前
Criminology34应助某某采纳,获得80
12秒前
13秒前
13秒前
13秒前
Young4399完成签到 ,获得积分10
14秒前
15秒前
风与月发布了新的文献求助10
15秒前
米饭辣椒完成签到,获得积分10
15秒前
16秒前
16秒前
liang完成签到,获得积分10
17秒前
17秒前
秋天的雪完成签到,获得积分10
18秒前
乐乐应助Aoooo采纳,获得10
19秒前
xie发布了新的文献求助10
19秒前
小李发布了新的文献求助10
20秒前
百里冰香发布了新的文献求助10
20秒前
82418519完成签到 ,获得积分10
22秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271837
求助须知:如何正确求助?哪些是违规求助? 4429337
关于积分的说明 13788325
捐赠科研通 4307703
什么是DOI,文献DOI怎么找? 2363706
邀请新用户注册赠送积分活动 1359371
关于科研通互助平台的介绍 1322355