Delineation of clinical target volume and organs at risk in cervical cancer radiotherapy by deep learning networks

宫颈癌 医学 豪斯多夫距离 核医学 直肠 放射治疗 癌症 人工智能 计算机科学 放射科 外科 内科学
作者
Miao Tian,Hongqiu Wang,Xingang Liu,Yuyun Ye,Ganlu Ouyang,Yali Shen,Zhiping Li,Xin Wang,Shaozhi Wu
出处
期刊:Medical Physics [Wiley]
卷期号:50 (10): 6354-6365 被引量:10
标识
DOI:10.1002/mp.16468
摘要

Delineation of the clinical target volume (CTV) and organs-at-risk (OARs) is important in cervical cancer radiotherapy. But it is generally labor-intensive, time-consuming, and subjective. This paper proposes a parallel-path attention fusion network (PPAF-net) to overcome these disadvantages in the delineation task.The PPAF-net utilizes both the texture and structure information of CTV and OARs by employing a U-Net network to capture the high-level texture information, and an up-sampling and down-sampling (USDS) network to capture the low-level structure information to accentuate the boundaries of CTV and OARs. Multi-level features extracted from both networks are then fused together through an attention module to generate the delineation result.The dataset contains 276 computed tomography (CT) scans of patients with cervical cancer of staging IB-IIA. The images are provided by the West China Hospital of Sichuan University. Simulation results demonstrate that PPAF-net performs favorably on the delineation of the CTV and OARs (e.g., rectum, bladder and etc.) and achieves the state-of-the-art delineation accuracy, respectively, for the CTV and OARs. In terms of the Dice Similarity Coefficient (DSC) and the Hausdorff Distance (HD), 88.61% and 2.25 cm for the CTV, 92.27% and 0.73 cm for the rectum, 96.74% and 0.68 cm for the bladder, 96.38% and 0.65 cm for the left kidney, 96.79% and 0.63 cm for the right kidney, 93.42% and 0.52 cm for the left femoral head, 93.69% and 0.51 cm for the right femoral head, 87.53% and 1.07 cm for the small intestine, and 91.50% and 0.84 cm for the spinal cord.The proposed automatic delineation network PPAF-net performs well on CTV and OARs segmentation tasks, which has great potential for reducing the burden of radiation oncologists and increasing the accuracy of delineation. In future, radiation oncologists from the West China Hospital of Sichuan University will further evaluate the results of network delineation, making this method helpful in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑的语芙完成签到,获得积分10
刚刚
墨薄凉完成签到,获得积分10
刚刚
学习应助徐锋采纳,获得10
1秒前
阝火火发布了新的文献求助10
1秒前
干秋白发布了新的文献求助10
1秒前
1秒前
科研通AI6应助风中水风采纳,获得30
2秒前
bingo0913完成签到,获得积分10
2秒前
2秒前
颦颦完成签到,获得积分10
2秒前
niuniu发布了新的文献求助10
2秒前
2秒前
Darwin完成签到,获得积分10
3秒前
zhaoyang完成签到 ,获得积分10
3秒前
3秒前
非而者厚应助木头人采纳,获得10
3秒前
lianqing完成签到,获得积分10
3秒前
4秒前
4秒前
chaos发布了新的文献求助20
4秒前
4秒前
斯文败类应助开心夜云采纳,获得10
4秒前
遨游的人发布了新的文献求助10
4秒前
5秒前
Akim应助俏皮的绝山采纳,获得10
5秒前
乐乐应助Regina采纳,获得10
5秒前
oreo发布了新的文献求助10
6秒前
汉堡包应助研友_Z1el0Z采纳,获得10
6秒前
北海章完成签到,获得积分10
6秒前
zqqq发布了新的文献求助10
6秒前
6秒前
6秒前
袁寒烟发布了新的文献求助10
6秒前
浮游应助胡立杰采纳,获得10
6秒前
lee完成签到,获得积分20
6秒前
dx发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
茕穹完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5329525
求助须知:如何正确求助?哪些是违规求助? 4469070
关于积分的说明 13907915
捐赠科研通 4362170
什么是DOI,文献DOI怎么找? 2396235
邀请新用户注册赠送积分活动 1389597
关于科研通互助平台的介绍 1360467