CrackDenseLinkNet: a deep convolutional neural network for semantic segmentation of cracks on concrete surface images

增采样 卷积神经网络 计算机科学 编码器 基本事实 分割 编码(集合论) 人工智能 深度学习 收缩率 模式识别(心理学) 图像(数学) 机器学习 操作系统 集合(抽象数据类型) 程序设计语言
作者
P. Manjunatha,Sami F. Masri,Aiichiro Nakano,L. Carter Wellford
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:23 (2): 796-817 被引量:8
标识
DOI:10.1177/14759217231173305
摘要

Cracks are the defects formed by cyclic loading, fatigue, shrinkage, creep, and so on. In addition, they represent the deterioration of the structures over some time. Therefore, it is essential to detect and classify them according to the condition grade at the early stages to prevent the collapse of structures. Deep learning-based semantic segmentation convolutional neural network (CNN) has millions of learnable parameters. However, depending on the complexity of the CNN, it takes hours to days to train the network fully. In this study, an encoder network DenseNet and modified LinkNet with five upsampling blocks were used as a decoder network. The proposed network is referred to as the “CrackDenseLinkNet” in this work. CrackDenseLinkNet has 19.15 million trainable parameters, although the input image size is 512 × 512 and has a deeper encoder. CrackDenseLinkNet and four other state-of-the-art (SOTA) methods were evaluated on three public and one private datasets. The proposed CNN, CrackDenseLinkNet, outperformed the best SOTA method, CrackSegNet, by 2.2% of F1-score on average across the four datasets. Lastly, a crack profile analysis demonstrated that the CrackDenseLinkNet has lesser variance in relative errors for the crack width, length, and area categories against the ground-truth data. The code and datasets can be downloaded at https://github.com/preethamam/CrackDenseLinkNet-DeepLearning-CrackSegmentation .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谢慧蕴发布了新的文献求助10
刚刚
爆米花应助加油采纳,获得10
1秒前
烂想家关注了科研通微信公众号
2秒前
binglangcha发布了新的文献求助10
4秒前
Serein完成签到,获得积分10
5秒前
5秒前
爆米花应助赵大虾采纳,获得10
8秒前
8秒前
汉堡包应助欧气青年采纳,获得10
9秒前
111发布了新的文献求助10
10秒前
陈彦滨完成签到 ,获得积分10
10秒前
烂想家发布了新的文献求助10
11秒前
11秒前
明理楷瑞发布了新的文献求助10
11秒前
小蘑菇应助任伟超采纳,获得10
12秒前
Ann完成签到,获得积分10
14秒前
李寒之完成签到 ,获得积分10
15秒前
同尘完成签到,获得积分10
16秒前
16秒前
cuicui发布了新的文献求助10
16秒前
16秒前
明理的曼凡应助111采纳,获得10
16秒前
water应助111采纳,获得10
16秒前
Jasper应助111采纳,获得10
16秒前
11完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
22秒前
22秒前
研友_Zrlk7L发布了新的文献求助10
23秒前
23秒前
23秒前
Thea完成签到,获得积分10
24秒前
田様应助明理楷瑞采纳,获得10
24秒前
Vincent发布了新的文献求助10
24秒前
25秒前
归尘应助cuicui采纳,获得10
25秒前
26秒前
Courageous完成签到 ,获得积分10
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993820
求助须知:如何正确求助?哪些是违规求助? 3534462
关于积分的说明 11265617
捐赠科研通 3274313
什么是DOI,文献DOI怎么找? 1806345
邀请新用户注册赠送积分活动 883137
科研通“疑难数据库(出版商)”最低求助积分说明 809712