Prehospital stroke-scale machine-learning model predicts the need for surgical intervention

冲程(发动机) 干预(咨询) 比例(比率) 计算机科学 物理医学与康复 医学 机器学习 人工智能 医疗急救 急诊医学 数据科学 工程类 精神科 地图学 地理 机械工程
作者
Yoichi Yoshida,Yosuke Hayashi,Tadanaga Shimada,Noriyuki Hattori,Keisuke Tomita,Rie Miura,Yasuo Yamao,S Tateishi,Yasuo Iwadate,Taka‐aki Nakada
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:6
标识
DOI:10.1038/s41598-023-36004-8
摘要

Abstract While the development of prehospital diagnosis scales has been reported in various regions, we have also developed a scale to predict stroke type using machine learning. In the present study, we aimed to assess for the first time a scale that predicts the need for surgical intervention across stroke types, including subarachnoid haemorrhage and intracerebral haemorrhage. A multicentre retrospective study was conducted within a secondary medical care area. Twenty-three items, including vitals and neurological symptoms, were analysed in adult patients suspected of having a stroke by paramedics. The primary outcome was a binary classification model for predicting surgical intervention based on eXtreme Gradient Boosting (XGBoost). Of the 1143 patients enrolled, 765 (70%) were used as the training cohort, and 378 (30%) were used as the test cohort. The XGBoost model predicted stroke requiring surgical intervention with high accuracy in the test cohort, with an area under the receiver operating characteristic curve of 0.802 (sensitivity 0.748, specificity 0.853). We found that simple survey items, such as the level of consciousness, vital signs, sudden headache, and speech abnormalities were the most significant variables for accurate prediction. This algorithm can be useful for prehospital stroke management, which is crucial for better patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
司佳雨完成签到,获得积分10
1秒前
SciGPT应助孤独傲松采纳,获得10
1秒前
2秒前
11发布了新的文献求助10
2秒前
fbwg发布了新的文献求助10
2秒前
2秒前
负责蜜蜂发布了新的文献求助10
2秒前
llq1993发布了新的文献求助10
3秒前
4秒前
平平发布了新的文献求助10
6秒前
周阳完成签到,获得积分10
6秒前
李健应助屿2采纳,获得10
7秒前
霸霸发布了新的文献求助10
7秒前
lalala应助晨妍采纳,获得10
7秒前
正直毛豆发布了新的文献求助10
7秒前
jj完成签到,获得积分10
8秒前
Dan发布了新的文献求助10
8秒前
小布丁完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
CodeCraft应助小陈采纳,获得10
9秒前
9秒前
砼砼完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
ldh完成签到,获得积分10
12秒前
13秒前
大模型应助霸霸采纳,获得10
14秒前
Lucas应助1111111采纳,获得10
15秒前
孤独傲松发布了新的文献求助10
16秒前
爱吃米线发布了新的文献求助10
17秒前
小白发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
淡淡萍完成签到,获得积分10
18秒前
19秒前
jackeylee99999完成签到,获得积分20
19秒前
Live应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666560
求助须知:如何正确求助?哪些是违规求助? 4882496
关于积分的说明 15117625
捐赠科研通 4825585
什么是DOI,文献DOI怎么找? 2583523
邀请新用户注册赠送积分活动 1537653
关于科研通互助平台的介绍 1495895