Prehospital stroke-scale machine-learning model predicts the need for surgical intervention

冲程(发动机) 干预(咨询) 比例(比率) 计算机科学 物理医学与康复 医学 机器学习 人工智能 医疗急救 急诊医学 数据科学 工程类 精神科 地图学 地理 机械工程
作者
Yoichi Yoshida,Yosuke Hayashi,Tadanaga Shimada,Noriyuki Hattori,Keisuke Tomita,Rie Miura,Yasuo Yamao,S Tateishi,Yasuo Iwadate,Taka‐aki Nakada
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:6
标识
DOI:10.1038/s41598-023-36004-8
摘要

Abstract While the development of prehospital diagnosis scales has been reported in various regions, we have also developed a scale to predict stroke type using machine learning. In the present study, we aimed to assess for the first time a scale that predicts the need for surgical intervention across stroke types, including subarachnoid haemorrhage and intracerebral haemorrhage. A multicentre retrospective study was conducted within a secondary medical care area. Twenty-three items, including vitals and neurological symptoms, were analysed in adult patients suspected of having a stroke by paramedics. The primary outcome was a binary classification model for predicting surgical intervention based on eXtreme Gradient Boosting (XGBoost). Of the 1143 patients enrolled, 765 (70%) were used as the training cohort, and 378 (30%) were used as the test cohort. The XGBoost model predicted stroke requiring surgical intervention with high accuracy in the test cohort, with an area under the receiver operating characteristic curve of 0.802 (sensitivity 0.748, specificity 0.853). We found that simple survey items, such as the level of consciousness, vital signs, sudden headache, and speech abnormalities were the most significant variables for accurate prediction. This algorithm can be useful for prehospital stroke management, which is crucial for better patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
JCSY应助酥酥采纳,获得10
2秒前
2秒前
平常的茗茗完成签到,获得积分10
3秒前
呆萌语梦发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
bkagyin应助优秀的枫叶采纳,获得10
6秒前
田様应助宋灵竹采纳,获得10
6秒前
6秒前
7秒前
小魏完成签到,获得积分10
7秒前
宇文风行发布了新的文献求助10
7秒前
7秒前
所所应助梦想成神采纳,获得10
7秒前
危险份子发布了新的文献求助10
7秒前
等待的三问完成签到,获得积分10
8秒前
8秒前
8秒前
hui发布了新的文献求助10
8秒前
安子发布了新的文献求助10
9秒前
9秒前
9秒前
orixero应助肥肥菲采纳,获得10
9秒前
10秒前
李哈哈发布了新的文献求助10
10秒前
义气笑卉发布了新的文献求助20
11秒前
小丁1127应助rachel03采纳,获得30
11秒前
少年应助xiao采纳,获得10
11秒前
11秒前
白鸽发布了新的文献求助10
11秒前
guo关闭了guo文献求助
12秒前
汉堡包应助小吴同学采纳,获得10
14秒前
14秒前
Alan发布了新的文献求助10
14秒前
一一应助顺心冰枫采纳,获得10
15秒前
smz发布了新的文献求助10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695131
求助须知:如何正确求助?哪些是违规求助? 5100385
关于积分的说明 15215391
捐赠科研通 4851561
什么是DOI,文献DOI怎么找? 2602454
邀请新用户注册赠送积分活动 1554227
关于科研通互助平台的介绍 1512186