Prehospital stroke-scale machine-learning model predicts the need for surgical intervention

冲程(发动机) 干预(咨询) 比例(比率) 计算机科学 物理医学与康复 医学 机器学习 人工智能 医疗急救 急诊医学 数据科学 工程类 精神科 地图学 地理 机械工程
作者
Yoichi Yoshida,Yosuke Hayashi,Tadanaga Shimada,Noriyuki Hattori,Keisuke Tomita,Rie Miura,Yasuo Yamao,S Tateishi,Yasuo Iwadate,Taka‐aki Nakada
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:6
标识
DOI:10.1038/s41598-023-36004-8
摘要

Abstract While the development of prehospital diagnosis scales has been reported in various regions, we have also developed a scale to predict stroke type using machine learning. In the present study, we aimed to assess for the first time a scale that predicts the need for surgical intervention across stroke types, including subarachnoid haemorrhage and intracerebral haemorrhage. A multicentre retrospective study was conducted within a secondary medical care area. Twenty-three items, including vitals and neurological symptoms, were analysed in adult patients suspected of having a stroke by paramedics. The primary outcome was a binary classification model for predicting surgical intervention based on eXtreme Gradient Boosting (XGBoost). Of the 1143 patients enrolled, 765 (70%) were used as the training cohort, and 378 (30%) were used as the test cohort. The XGBoost model predicted stroke requiring surgical intervention with high accuracy in the test cohort, with an area under the receiver operating characteristic curve of 0.802 (sensitivity 0.748, specificity 0.853). We found that simple survey items, such as the level of consciousness, vital signs, sudden headache, and speech abnormalities were the most significant variables for accurate prediction. This algorithm can be useful for prehospital stroke management, which is crucial for better patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
风驻云停完成签到,获得积分10
1秒前
Ava应助隔壁的邻家小兴采纳,获得10
3秒前
等待的道消完成签到 ,获得积分10
3秒前
无极微光应助过时的访梦采纳,获得20
3秒前
xiaoxie发布了新的文献求助20
4秒前
4秒前
4秒前
呐呐呐发布了新的文献求助10
6秒前
情怀应助carrotyi采纳,获得10
7秒前
千树怜发布了新的文献求助10
9秒前
9秒前
10秒前
orchid发布了新的文献求助10
11秒前
小尚完成签到,获得积分10
11秒前
小小咸鱼完成签到 ,获得积分10
12秒前
summer完成签到,获得积分10
12秒前
12秒前
Frank完成签到,获得积分10
13秒前
Criminology34发布了新的文献求助300
14秒前
嘿嘿应助乾澪怀新采纳,获得10
14秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
happy星发布了新的文献求助10
17秒前
Boro发布了新的文献求助10
17秒前
18秒前
之_ZH完成签到 ,获得积分10
19秒前
xingyi完成签到,获得积分10
19秒前
无所忌惮的玫瑰果完成签到,获得积分10
20秒前
平贝花应助mtfx采纳,获得10
20秒前
嘴巴张大一点完成签到,获得积分10
20秒前
qigu完成签到,获得积分10
20秒前
包容的垣完成签到,获得积分10
20秒前
20秒前
heqiancan完成签到,获得积分10
21秒前
smofan发布了新的文献求助10
21秒前
草莓星完成签到,获得积分10
22秒前
23秒前
千树怜完成签到,获得积分20
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5685045
求助须知:如何正确求助?哪些是违规求助? 5040038
关于积分的说明 15185849
捐赠科研通 4844104
什么是DOI,文献DOI怎么找? 2597110
邀请新用户注册赠送积分活动 1549690
关于科研通互助平台的介绍 1508176