Prehospital stroke-scale machine-learning model predicts the need for surgical intervention

冲程(发动机) 干预(咨询) 比例(比率) 计算机科学 物理医学与康复 医学 机器学习 人工智能 医疗急救 急诊医学 数据科学 工程类 精神科 地图学 地理 机械工程
作者
Yoichi Yoshida,Yosuke Hayashi,Tadanaga Shimada,Noriyuki Hattori,Keisuke Tomita,Rie Miura,Yasuo Yamao,S Tateishi,Yasuo Iwadate,Taka‐aki Nakada
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:6
标识
DOI:10.1038/s41598-023-36004-8
摘要

Abstract While the development of prehospital diagnosis scales has been reported in various regions, we have also developed a scale to predict stroke type using machine learning. In the present study, we aimed to assess for the first time a scale that predicts the need for surgical intervention across stroke types, including subarachnoid haemorrhage and intracerebral haemorrhage. A multicentre retrospective study was conducted within a secondary medical care area. Twenty-three items, including vitals and neurological symptoms, were analysed in adult patients suspected of having a stroke by paramedics. The primary outcome was a binary classification model for predicting surgical intervention based on eXtreme Gradient Boosting (XGBoost). Of the 1143 patients enrolled, 765 (70%) were used as the training cohort, and 378 (30%) were used as the test cohort. The XGBoost model predicted stroke requiring surgical intervention with high accuracy in the test cohort, with an area under the receiver operating characteristic curve of 0.802 (sensitivity 0.748, specificity 0.853). We found that simple survey items, such as the level of consciousness, vital signs, sudden headache, and speech abnormalities were the most significant variables for accurate prediction. This algorithm can be useful for prehospital stroke management, which is crucial for better patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
量子星尘发布了新的文献求助10
2秒前
在水一方应助amanda采纳,获得10
3秒前
小鸟芋圆露露完成签到 ,获得积分0
3秒前
自信鞯完成签到,获得积分10
6秒前
修炼成绝完成签到,获得积分10
7秒前
第五轻柔完成签到,获得积分10
7秒前
mescal完成签到,获得积分10
8秒前
研友_Z7Xdl8完成签到,获得积分0
8秒前
8秒前
8秒前
可爱丸子完成签到,获得积分10
9秒前
Rinamamiya发布了新的文献求助50
9秒前
头上有犄角bb完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
pluto应助fafafa采纳,获得10
12秒前
14秒前
15秒前
15秒前
16秒前
璟晔完成签到,获得积分10
17秒前
19秒前
19秒前
醉熏的伊完成签到,获得积分10
20秒前
南歌子完成签到 ,获得积分10
21秒前
grass发布了新的文献求助10
21秒前
酥瓜完成签到 ,获得积分10
23秒前
asdfzxcv应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
香蕉觅云应助科研通管家采纳,获得10
25秒前
Ava应助科研通管家采纳,获得10
25秒前
asdfzxcv应助科研通管家采纳,获得10
25秒前
25秒前
asdfzxcv应助科研通管家采纳,获得10
25秒前
asdfzxcv应助科研通管家采纳,获得10
25秒前
asdfzxcv应助科研通管家采纳,获得10
26秒前
asdfzxcv应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
香蕉觅云应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741989
求助须知:如何正确求助?哪些是违规求助? 5404909
关于积分的说明 15343645
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625021
邀请新用户注册赠送积分活动 1573893
关于科研通互助平台的介绍 1530838