Prehospital stroke-scale machine-learning model predicts the need for surgical intervention

冲程(发动机) 干预(咨询) 比例(比率) 计算机科学 物理医学与康复 医学 机器学习 人工智能 医疗急救 急诊医学 数据科学 工程类 精神科 地图学 地理 机械工程
作者
Yoichi Yoshida,Yosuke Hayashi,Tadanaga Shimada,Noriyuki Hattori,Keisuke Tomita,Rie Miura,Yasuo Yamao,S Tateishi,Yasuo Iwadate,Taka‐aki Nakada
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:6
标识
DOI:10.1038/s41598-023-36004-8
摘要

Abstract While the development of prehospital diagnosis scales has been reported in various regions, we have also developed a scale to predict stroke type using machine learning. In the present study, we aimed to assess for the first time a scale that predicts the need for surgical intervention across stroke types, including subarachnoid haemorrhage and intracerebral haemorrhage. A multicentre retrospective study was conducted within a secondary medical care area. Twenty-three items, including vitals and neurological symptoms, were analysed in adult patients suspected of having a stroke by paramedics. The primary outcome was a binary classification model for predicting surgical intervention based on eXtreme Gradient Boosting (XGBoost). Of the 1143 patients enrolled, 765 (70%) were used as the training cohort, and 378 (30%) were used as the test cohort. The XGBoost model predicted stroke requiring surgical intervention with high accuracy in the test cohort, with an area under the receiver operating characteristic curve of 0.802 (sensitivity 0.748, specificity 0.853). We found that simple survey items, such as the level of consciousness, vital signs, sudden headache, and speech abnormalities were the most significant variables for accurate prediction. This algorithm can be useful for prehospital stroke management, which is crucial for better patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李某完成签到,获得积分20
刚刚
zbw完成签到,获得积分10
刚刚
waldoe完成签到,获得积分10
1秒前
1秒前
1秒前
粥粥粥发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
大个应助山有木兮采纳,获得10
3秒前
完美世界应助wuxunxun2015采纳,获得10
3秒前
大模型应助HoldenX采纳,获得10
3秒前
桐桐应助念之采纳,获得10
3秒前
3秒前
4秒前
4秒前
yyy完成签到,获得积分10
4秒前
4秒前
完美世界应助小巧的铅笔采纳,获得10
4秒前
打打应助芙莉莲采纳,获得10
5秒前
waaan发布了新的文献求助10
5秒前
玛卡巴卡完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
羊羊完成签到,获得积分10
6秒前
安详墨镜发布了新的文献求助10
6秒前
6秒前
李爱国应助宿亮东采纳,获得10
6秒前
7秒前
7秒前
幸运霖发布了新的文献求助10
7秒前
你我战发布了新的文献求助10
7秒前
科研通AI2S应助称心的雁兰采纳,获得10
8秒前
zz完成签到,获得积分10
8秒前
8秒前
CC发布了新的文献求助10
8秒前
glycine发布了新的文献求助10
9秒前
科目三应助凌寒233采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613029
求助须知:如何正确求助?哪些是违规求助? 4698296
关于积分的说明 14897022
捐赠科研通 4734847
什么是DOI,文献DOI怎么找? 2546821
邀请新用户注册赠送积分活动 1510838
关于科研通互助平台的介绍 1473494