Prehospital stroke-scale machine-learning model predicts the need for surgical intervention

冲程(发动机) 干预(咨询) 比例(比率) 计算机科学 物理医学与康复 医学 机器学习 人工智能 医疗急救 急诊医学 数据科学 工程类 精神科 地图学 地理 机械工程
作者
Yoichi Yoshida,Yosuke Hayashi,Tadanaga Shimada,Noriyuki Hattori,Keisuke Tomita,Rie Miura,Yasuo Yamao,S Tateishi,Yasuo Iwadate,Taka‐aki Nakada
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:6
标识
DOI:10.1038/s41598-023-36004-8
摘要

Abstract While the development of prehospital diagnosis scales has been reported in various regions, we have also developed a scale to predict stroke type using machine learning. In the present study, we aimed to assess for the first time a scale that predicts the need for surgical intervention across stroke types, including subarachnoid haemorrhage and intracerebral haemorrhage. A multicentre retrospective study was conducted within a secondary medical care area. Twenty-three items, including vitals and neurological symptoms, were analysed in adult patients suspected of having a stroke by paramedics. The primary outcome was a binary classification model for predicting surgical intervention based on eXtreme Gradient Boosting (XGBoost). Of the 1143 patients enrolled, 765 (70%) were used as the training cohort, and 378 (30%) were used as the test cohort. The XGBoost model predicted stroke requiring surgical intervention with high accuracy in the test cohort, with an area under the receiver operating characteristic curve of 0.802 (sensitivity 0.748, specificity 0.853). We found that simple survey items, such as the level of consciousness, vital signs, sudden headache, and speech abnormalities were the most significant variables for accurate prediction. This algorithm can be useful for prehospital stroke management, which is crucial for better patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
墨林完成签到,获得积分20
2秒前
2秒前
科研通AI2S应助yiguaer采纳,获得10
3秒前
小马甲应助Rickstein采纳,获得10
3秒前
故事的小黄花完成签到,获得积分10
3秒前
上官若男应助jzt12138采纳,获得10
3秒前
4秒前
自觉的帽子完成签到,获得积分10
4秒前
滕祥应助bin采纳,获得100
4秒前
4秒前
5秒前
rui发布了新的文献求助10
5秒前
5秒前
zhb发布了新的文献求助10
6秒前
桐桐应助好名字采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
lulu发布了新的文献求助10
9秒前
9秒前
韩豆乐发布了新的文献求助10
10秒前
南歌子完成签到 ,获得积分10
10秒前
11秒前
12秒前
无花果应助NOVEICE采纳,获得30
12秒前
12秒前
星落枝头发布了新的文献求助10
13秒前
平常心完成签到 ,获得积分10
13秒前
慕青应助Leon Lai采纳,获得10
14秒前
温暖的若之完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
ye发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
领导范儿应助LIUmm采纳,获得10
15秒前
BowieHuang应助liyiliyi117采纳,获得10
15秒前
泡芙完成签到,获得积分20
15秒前
费1发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711580
求助须知:如何正确求助?哪些是违规求助? 5204694
关于积分的说明 15264720
捐赠科研通 4863859
什么是DOI,文献DOI怎么找? 2610959
邀请新用户注册赠送积分活动 1561329
关于科研通互助平台的介绍 1518667