scASGC: An adaptive simplified graph convolution model for clustering single-cell RNA-seq data

聚类分析 计算机科学 源代码 卷积(计算机科学) 图形 维数之咒 编码(集合论) 数据挖掘 人工智能 模式识别(心理学) 理论计算机科学 人工神经网络 操作系统 集合(抽象数据类型) 程序设计语言
作者
Shudong Wang,Y. Zhang,Yulin Zhang,Wenhao Wu,Lan Ye,Yunyin Li,Jionglong Su,Shanchen Pang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:163: 107152-107152 被引量:8
标识
DOI:10.1016/j.compbiomed.2023.107152
摘要

Single-cell RNA sequencing (scRNA-seq) is now a successful technique for identifying cellular heterogeneity, revealing novel cell subpopulations, and forecasting developmental trajectories. A crucial component of the processing of scRNA-seq data is the precise identification of cell subpopulations. Although many unsupervised clustering methods have been developed to cluster cell subpopulations, the performance of these methods is vulnerable to dropouts and high dimensionality. In addition, most existing methods are time-consuming and fail to adequately account for potential associations between cells. In the manuscript, we present an unsupervised clustering method based on an adaptive simplified graph convolution model called scASGC. The proposed method builds plausible cell graphs, aggregates neighbor information using a simplified graph convolution model, and adaptively determines the most optimal number of convolution layers for various graphs. Experiments on 12 public datasets show that scASGC outperforms both classical and state-of-the-art clustering methods. In addition, in a study of mouse intestinal muscle containing 15,983 cells, we identified distinct marker genes based on the clustering results of scASGC. The source code of scASGC is available at https://github.com/ZzzOctopus/scASGC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
LEMONS应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
淑儿哥哥完成签到,获得积分10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
丘比特应助张德帅采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
妩媚的强炫完成签到,获得积分10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
meng17应助科研通管家采纳,获得20
1秒前
Billy应助科研通管家采纳,获得30
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
连续体26发布了新的文献求助30
2秒前
2秒前
李健应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
2秒前
Billy应助科研通管家采纳,获得30
2秒前
LYSM应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
1111发布了新的文献求助10
3秒前
Meat_d发布了新的文献求助10
3秒前
阿胡发布了新的文献求助10
3秒前
米糊发布了新的文献求助10
3秒前
cc完成签到,获得积分10
3秒前
烂漫薯片完成签到,获得积分10
3秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960796
求助须知:如何正确求助?哪些是违规求助? 3506987
关于积分的说明 11133209
捐赠科研通 3239307
什么是DOI,文献DOI怎么找? 1790107
邀请新用户注册赠送积分活动 872145
科研通“疑难数据库(出版商)”最低求助积分说明 803149