IDDF2023-ABS-0132 Evaluation of the targeted pathological indicators related to the combining targeted therapy and immunotherapy in hepatocellular carcinoma based on multi-parameter magnetic resonance imaging

磁共振成像 靶向治疗 肝细胞癌 核医学 医学 核磁共振 物理 癌症 癌症研究 放射科 内科学
作者
Chenyu Song,Shi‐Ting Feng
标识
DOI:10.1136/gutjnl-2023-iddf.138
摘要

Background

We aimed to explore the feasibility of multi-parameter MRI in evaluating the relationships between MRI parameters and the targeted indicators (VEGFA, PD-L1) related to combining targeted therapy and immunotherapy (TIT) in different tumor regions.

Methods

MRI scans with liver-specific contrast were conducted on C57/BL6 mouse model. 3D printing technology was used to spatially match the planes of MRI with pathology (ntumor=15, nplane=115). In the corresponding planes of MRI and pathology, MRI parameters and the targeted indicators related to TIT were evaluated and compared in the regions of the plane, margin, center, and whole tumor. Based on MRI parameters, we constructed the evaluation model for the pathological indicator in different regions (plane, margin, center, and whole tumor) respectively. The combined targeted indicators related to TIT were grouped into VhighIhigh (high VEGFA and high PD-L1), VhighIlow, VlowIhigh, VlowIlow groups. MRI parameters with significant differences among these four groups were used to establish the evaluation model.

Results

VEGFA, PD-L1, and MRI parameters Ktrans, iAUC60, T1pos significantly differed between the regions of margin and center(P<0.05). MRI parameters significantly correlated to the targeted indicators in different regions. MRI parameters Ktrans, Kep, Ve, and α significantly differed between VEGFA high and low groups in different regions. The AUCs of the VEGFA prediction model at the regions of margin combining center (ROCM+T) and margin (ROCM) were 0.732(95%CI 0.663-0.793), and 0.715(95%CI 0.621-0.797), respectively. MRI parameters Kep, Ve, iAUC60, and T1pre, T1pos significantly differed between PD-L1 high and low groups in different regions. The AUCs of PD-L1 prediction models of ROCM+T, ROCM, ROCplane were 0.707(95%CI 0.637-0.770), 0.647(95%CI 0.552-0.735), 0.648(95%CI 0.552-0.736), respectively. Ktrans, Kep, Ve, and T1pre significantly differed among VhighIhigh, VhighIlow, VlowIhigh, and VlowIlow groups. The prediction model was statistically significant (P=0.001) with the goodness-of-fit test P> 0.8.

Conclusions

Multi-parameter MRI has the potential to evaluate the expression and distribution of the targeted indicators (VEGFA, PD-L1) related to TIT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助吴雨峰采纳,获得10
刚刚
阿晨发布了新的文献求助10
刚刚
刚刚
鑫博发布了新的文献求助10
1秒前
shi完成签到,获得积分20
1秒前
默默含卉完成签到,获得积分10
2秒前
思源应助帥鸽采纳,获得10
3秒前
歪比八卜发布了新的文献求助10
3秒前
3秒前
迅速又菡发布了新的文献求助10
5秒前
5秒前
暴躁的酸奶应助hkh采纳,获得10
6秒前
happyAlice应助hkh采纳,获得10
6秒前
酷波er应助hkh采纳,获得10
6秒前
英俊的翎发布了新的文献求助10
6秒前
7秒前
领导范儿应助阳光的羊采纳,获得10
8秒前
Darwin应助勤劳小蕊采纳,获得10
8秒前
阿晨完成签到,获得积分20
8秒前
9秒前
9秒前
科研通AI5应助yoyoyo采纳,获得30
11秒前
四叶草发布了新的文献求助30
11秒前
ClancyCheng发布了新的文献求助10
12秒前
酷波er应助rwp2021采纳,获得10
12秒前
kelly发布了新的文献求助10
14秒前
二宝发布了新的文献求助10
16秒前
李健应助阿晨采纳,获得10
17秒前
852应助ZXK采纳,获得10
18秒前
丘比特应助我是张铁柱·采纳,获得10
20秒前
哭泣藏花完成签到 ,获得积分10
20秒前
111发布了新的文献求助30
21秒前
快乐排骨汤完成签到 ,获得积分10
22秒前
雪雪完成签到,获得积分10
22秒前
陆千万完成签到,获得积分10
22秒前
lh完成签到,获得积分10
23秒前
鑫博完成签到 ,获得积分10
24秒前
追寻清完成签到,获得积分10
24秒前
猫南北给猫南北的求助进行了留言
24秒前
华仔应助阿柴辣么可爱采纳,获得30
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Nonhuman Primate Models in Biomedical Research: State of the Science and Future Needs 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
A proof-of-concept study on a universal standard kit to evaluate the risks of inspectors for their foundational ability of visual inspection of injectable drug products 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3696558
求助须知:如何正确求助?哪些是违规求助? 3248463
关于积分的说明 9857400
捐赠科研通 2959797
什么是DOI,文献DOI怎么找? 1622982
邀请新用户注册赠送积分活动 768363
科研通“疑难数据库(出版商)”最低求助积分说明 741511