脂类学
代谢组学
糖尿病性视网膜病变
脂质代谢
代谢组
发病机制
代谢途径
生物
糖尿病
代谢物
生物信息学
计算生物学
医学
生物化学
内科学
内分泌学
基因
作者
Junwei Fang,Hanying Wang,Tian Niu,Xin Shi,Xindan Xing,Yuan Qu,Yujuan Liu,Xinyi Liu,Yu Xiao,T Dou,Yinchen Shen,Kun Liu
标识
DOI:10.1021/acs.jproteome.3c00007
摘要
As a vision-threatening complication of diabetes mellitus (DM), proliferative diabetic retinopathy (PDR) is associated with sustained metabolic disorders. Herein, we collected the vitreous cavity fluid of 49 patients with PDR and 23 control subjects without DM for metabolomics and lipidomics analyses. Multivariate statistical methods were performed to explore relationships between samples. For each group of metabolites, gene set variation analysis scores were generated, and we constructed a lipid network by using weighted gene co-expression network analysis. The association between lipid co-expression modules and metabolite set scores was investigated using the two-way orthogonal partial least squares (O2PLS) model. A total of 390 lipids and 314 metabolites were identified. Multivariate statistical analysis revealed significant vitreous metabolic and lipid differences between PDR and controls. Pathway analysis showed that 8 metabolic processes might be associated with the development of PDR, and 14 lipid species were found to be altered in PDR patients. Combining metabolomics and lipidomics, we identified fatty acid desaturase 2 (FADS2) as an important potential contributor to the pathogenesis of PDR. Collectively, this study integrates vitreous metabolomics and lipidomics to comprehensively unravel metabolic dysregulation and identifies genetic variants associated with altered lipid species in the mechanistic pathways for PDR.
科研通智能强力驱动
Strongly Powered by AbleSci AI