Fusing In-storage and Near-storage Acceleration of Convolutional Neural Networks

计算机科学 卷积神经网络 现场可编程门阵列 嵌入式系统 辅助存储器 计算机数据存储 Stratix公司 计算机硬件 并行计算 人工智能
作者
Ikenna Okafor,Akshay Krishna Ramanathan,Nagadastagiri Challapalle,Zheyu Li,Vijaykrishnan Narayanan
出处
期刊:ACM Journal on Emerging Technologies in Computing Systems [Association for Computing Machinery]
卷期号:20 (1): 1-22 被引量:1
标识
DOI:10.1145/3597496
摘要

Video analytics has a wide range of applications and has attracted much interest over the years. While it can be both computationally and energy-intensive, video analytics can greatly benefit from in/near memory compute. The practice of moving compute closer to memory has continued to show improvements to performance and energy consumption and is seeing increasing adoption. Recent advancements in solid state drives (SSDs) have incorporated near memory Field Programmable Gate Arrays (FPGAs) with shared access to the drive’s storage cells. These near memory FPGAs are capable of running operations required by video analytic pipelines such as object detection and template matching. These operations are typically executed using Convolutional Neural Networks (CNNs). A CNN is composed of multiple individually processed layers that perform various image processing tasks. Due to lack of resources, a layer may be partitioned into more manageable sub-layers. These sub-layers are then processed sequentially, however, some sub-layers can be processed simultaneously. Moreover, the storage cells within FPGA equipped SSDs are capable of being augmented with in-storage compute to accelerate CNN workloads and exploit the intra-parallelism within a CNN layer. To this end, we present our work, which leverages heterogeneous architectures to create an in/near-storage acceleration solution for video analytics. We designed a NAND flash accelerator and an FPGA accelerator, then mapped and evaluated several CNN benchmarks. We show how to utilize FPGAs, local DRAMs, and in-memory SSD compute to accelerate CNN workloads. Our work also demonstrates how to remove unnecessary memory transfers to save latency and energy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
haha完成签到,获得积分20
1秒前
爬坑的良完成签到,获得积分10
1秒前
JamesPei应助能量球采纳,获得10
1秒前
2秒前
勤奋高丽完成签到,获得积分10
2秒前
大气的紫菜完成签到,获得积分10
2秒前
2秒前
Singularity应助surou采纳,获得10
3秒前
liberty发布了新的文献求助10
3秒前
完美世界应助FYJY采纳,获得10
3秒前
研友_VZG7GZ应助小可爱采纳,获得10
4秒前
淡出发布了新的文献求助10
5秒前
6秒前
6秒前
SciGPT应助言言采纳,获得10
7秒前
吴旭东发布了新的文献求助10
7秒前
水三寿完成签到,获得积分20
9秒前
9秒前
9秒前
9秒前
10秒前
AYESHA完成签到,获得积分10
10秒前
爆米花应助SEM小菜鸡采纳,获得200
10秒前
sunlihao发布了新的文献求助10
10秒前
11秒前
11秒前
不知名的呆毛应助阿昆采纳,获得30
11秒前
12秒前
12秒前
13秒前
星梦发布了新的文献求助30
14秒前
能量球发布了新的文献求助10
14秒前
FYJY发布了新的文献求助10
15秒前
HW发布了新的文献求助10
15秒前
FashionBoy应助成成成岩浆采纳,获得10
15秒前
小苏打完成签到,获得积分10
16秒前
wangyichen完成签到,获得积分20
16秒前
16秒前
JingP发布了新的文献求助10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
EPR Spectroscopy: Fundamentals and Methods 500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444349
求助须知:如何正确求助?哪些是违规求助? 3040424
关于积分的说明 8981115
捐赠科研通 2729018
什么是DOI,文献DOI怎么找? 1496807
科研通“疑难数据库(出版商)”最低求助积分说明 691880
邀请新用户注册赠送积分活动 689399