Fusing In-storage and Near-storage Acceleration of Convolutional Neural Networks

计算机科学 卷积神经网络 现场可编程门阵列 嵌入式系统 辅助存储器 计算机数据存储 Stratix公司 计算机硬件 并行计算 人工智能
作者
Ikenna Okafor,Akshay Krishna Ramanathan,Nagadastagiri Challapalle,Zheyu Li,Vijaykrishnan Narayanan
出处
期刊:ACM Journal on Emerging Technologies in Computing Systems [Association for Computing Machinery]
卷期号:20 (1): 1-22 被引量:1
标识
DOI:10.1145/3597496
摘要

Video analytics has a wide range of applications and has attracted much interest over the years. While it can be both computationally and energy-intensive, video analytics can greatly benefit from in/near memory compute. The practice of moving compute closer to memory has continued to show improvements to performance and energy consumption and is seeing increasing adoption. Recent advancements in solid state drives (SSDs) have incorporated near memory Field Programmable Gate Arrays (FPGAs) with shared access to the drive’s storage cells. These near memory FPGAs are capable of running operations required by video analytic pipelines such as object detection and template matching. These operations are typically executed using Convolutional Neural Networks (CNNs). A CNN is composed of multiple individually processed layers that perform various image processing tasks. Due to lack of resources, a layer may be partitioned into more manageable sub-layers. These sub-layers are then processed sequentially, however, some sub-layers can be processed simultaneously. Moreover, the storage cells within FPGA equipped SSDs are capable of being augmented with in-storage compute to accelerate CNN workloads and exploit the intra-parallelism within a CNN layer. To this end, we present our work, which leverages heterogeneous architectures to create an in/near-storage acceleration solution for video analytics. We designed a NAND flash accelerator and an FPGA accelerator, then mapped and evaluated several CNN benchmarks. We show how to utilize FPGAs, local DRAMs, and in-memory SSD compute to accelerate CNN workloads. Our work also demonstrates how to remove unnecessary memory transfers to save latency and energy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欲望被鬼应助外向如冬采纳,获得20
刚刚
充电宝应助长情墨镜采纳,获得10
1秒前
可爱的函函应助一二采纳,获得10
1秒前
1秒前
wbn1212发布了新的文献求助200
1秒前
cui完成签到,获得积分10
2秒前
2秒前
执着的灯泡完成签到,获得积分10
2秒前
施耐德发布了新的文献求助10
3秒前
4秒前
Robin发布了新的文献求助10
4秒前
ossantu发布了新的文献求助10
4秒前
Forever完成签到,获得积分10
4秒前
灵巧板栗完成签到,获得积分20
5秒前
小林太郎应助七霖采纳,获得20
5秒前
泥鳅面完成签到,获得积分10
5秒前
7秒前
卷大喵完成签到,获得积分10
7秒前
美茬子完成签到,获得积分10
7秒前
7秒前
mark完成签到,获得积分10
7秒前
lee完成签到,获得积分10
7秒前
Zac应助LUMOS采纳,获得10
7秒前
orixero应助暖暖采纳,获得10
8秒前
orixero应助施耐德采纳,获得10
8秒前
科研通AI2S应助guoshuxian采纳,获得20
8秒前
研友_VZG7GZ应助小糯采纳,获得10
8秒前
8秒前
9秒前
Went完成签到,获得积分10
9秒前
我是魔王完成签到,获得积分10
10秒前
www完成签到,获得积分10
10秒前
此去经年完成签到 ,获得积分10
10秒前
yutang完成签到 ,获得积分10
10秒前
1111222完成签到,获得积分10
11秒前
不一样的烟火完成签到,获得积分10
11秒前
Bioc完成签到,获得积分10
11秒前
huahua完成签到 ,获得积分10
12秒前
幽默鱼完成签到,获得积分10
12秒前
可靠的亦竹完成签到 ,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556082
求助须知:如何正确求助?哪些是违规求助? 3131635
关于积分的说明 9392313
捐赠科研通 2831483
什么是DOI,文献DOI怎么找? 1556442
邀请新用户注册赠送积分活动 726605
科研通“疑难数据库(出版商)”最低求助积分说明 715912