MM-GLCM-CNN: A multi-scale and multi-level based GLCM-CNN for polyp classification

卷积神经网络 人工智能 计算机科学 模式识别(心理学) 深度学习 特征(语言学) 基本事实 特征提取 灰度 医学影像学 学习迁移 图像(数学) 计算机视觉 哲学 语言学
作者
Shu Zhang,Jinru Wu,Enze Shi,Sigang Yu,Yongfeng Gao,Lihong Connie Li,L Kuo,Marc J. Pomeroy,Zhengrong Jerome Liang
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:108: 102257-102257 被引量:5
标识
DOI:10.1016/j.compmedimag.2023.102257
摘要

Distinguishing malignant from benign lesions has significant clinical impacts on both early detection and optimal management of those early detections. Convolutional neural network (CNN) has shown great potential in medical imaging applications due to its powerful feature learning capability. However, it is very challenging to obtain pathological ground truth, addition to collected in vivo medical images, to construct objective training labels for feature learning, leading to the difficulty of performing lesion diagnosis. This is contrary to the requirement that CNN algorithms need a large number of datasets for the training. To explore the ability to learn features from small pathologically-proven datasets for differentiation of malignant from benign polyps, we propose a Multi-scale and Multi-level based Gray-level Co-occurrence Matrix CNN (MM-GLCM-CNN). Specifically, instead of inputting the lesions' medical images, the GLCM, which characterizes the lesion heterogeneity in terms of image texture characteristics, is fed into the MM-GLCN-CNN model for the training. This aims to improve feature extraction by introducing multi-scale and multi-level analysis into the construction of lesion texture characteristic descriptors (LTCDs). To learn and fuse multiple sets of LTCDs from small datasets for lesion diagnosis, we further propose an adaptive multi-input CNN learning framework. Furthermore, an Adaptive Weight Network is used to highlight important information and suppress redundant information after the fusion of the LTCDs. We evaluated the performance of MM-GLCM-CNN by the area under the receiver operating characteristic curve (AUC) merit on small private lesion datasets of colon polyps. The AUC score reaches 93.99% with a gain of 1.49% over current state-of-the-art lesion classification methods on the same dataset. This gain indicates the importance of incorporating lesion characteristic heterogeneity for the prediction of lesion malignancy using small pathologically-proven datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助完美芹采纳,获得10
刚刚
李爱国应助虚幻幻翠采纳,获得10
1秒前
调研昵称发布了新的文献求助10
2秒前
4秒前
善学以致用应助胡桃桃采纳,获得10
4秒前
4秒前
在水一方应助甜甜小蜜蜂采纳,获得10
5秒前
lqkcqmu发布了新的文献求助10
8秒前
丶呆久自然萌完成签到,获得积分10
10秒前
不起名字了应助Chuu♡采纳,获得10
11秒前
13秒前
Three完成签到 ,获得积分10
13秒前
思源应助550采纳,获得10
15秒前
香蕉觅云应助wxr采纳,获得10
17秒前
领导范儿应助小陈采纳,获得10
19秒前
19秒前
21秒前
24秒前
希望天下0贩的0应助阳pipi采纳,获得10
24秒前
24秒前
hhgyy完成签到,获得积分20
26秒前
yyy发布了新的文献求助10
26秒前
淡然以蓝发布了新的文献求助10
27秒前
28秒前
斯文冷亦完成签到 ,获得积分10
29秒前
冰强发布了新的文献求助10
29秒前
30秒前
hsy发布了新的文献求助10
30秒前
30秒前
魚纾完成签到,获得积分10
31秒前
想睡觉的面包酱完成签到,获得积分10
31秒前
31秒前
och3发布了新的文献求助20
32秒前
32秒前
一页书完成签到,获得积分10
33秒前
领导范儿应助hsy采纳,获得10
33秒前
33秒前
科研通AI2S应助陈陈采纳,获得10
34秒前
he0570发布了新的文献求助10
35秒前
cfg发布了新的文献求助10
35秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260615
求助须知:如何正确求助?哪些是违规求助? 2901766
关于积分的说明 8317059
捐赠科研通 2571348
什么是DOI,文献DOI怎么找? 1397005
科研通“疑难数据库(出版商)”最低求助积分说明 653622
邀请新用户注册赠送积分活动 632087