MM-GLCM-CNN: A multi-scale and multi-level based GLCM-CNN for polyp classification

卷积神经网络 人工智能 计算机科学 模式识别(心理学) 深度学习 特征(语言学) 基本事实 特征提取 医学影像学 学习迁移 计算机视觉 哲学 语言学
作者
Shu Zhang,Jinru Wu,Enze Shi,Sigang Yu,Yongfeng Gao,Lihong Connie Li,Licheng R. Kuo,Marc J. Pomeroy,Zhengrong Jerome Liang
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:108: 102257-102257 被引量:12
标识
DOI:10.1016/j.compmedimag.2023.102257
摘要

Distinguishing malignant from benign lesions has significant clinical impacts on both early detection and optimal management of those early detections. Convolutional neural network (CNN) has shown great potential in medical imaging applications due to its powerful feature learning capability. However, it is very challenging to obtain pathological ground truth, addition to collected in vivo medical images, to construct objective training labels for feature learning, leading to the difficulty of performing lesion diagnosis. This is contrary to the requirement that CNN algorithms need a large number of datasets for the training. To explore the ability to learn features from small pathologically-proven datasets for differentiation of malignant from benign polyps, we propose a Multi-scale and Multi-level based Gray-level Co-occurrence Matrix CNN (MM-GLCM-CNN). Specifically, instead of inputting the lesions' medical images, the GLCM, which characterizes the lesion heterogeneity in terms of image texture characteristics, is fed into the MM-GLCN-CNN model for the training. This aims to improve feature extraction by introducing multi-scale and multi-level analysis into the construction of lesion texture characteristic descriptors (LTCDs). To learn and fuse multiple sets of LTCDs from small datasets for lesion diagnosis, we further propose an adaptive multi-input CNN learning framework. Furthermore, an Adaptive Weight Network is used to highlight important information and suppress redundant information after the fusion of the LTCDs. We evaluated the performance of MM-GLCM-CNN by the area under the receiver operating characteristic curve (AUC) merit on small private lesion datasets of colon polyps. The AUC score reaches 93.99% with a gain of 1.49% over current state-of-the-art lesion classification methods on the same dataset. This gain indicates the importance of incorporating lesion characteristic heterogeneity for the prediction of lesion malignancy using small pathologically-proven datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小宋完成签到,获得积分10
1秒前
呵呵哒完成签到,获得积分20
2秒前
嘉1612完成签到,获得积分10
3秒前
ovoclive发布了新的文献求助10
4秒前
4秒前
文档发布了新的文献求助10
4秒前
momo发布了新的文献求助10
5秒前
踏实的火龙果应助何白采纳,获得10
7秒前
8秒前
微醺小王发布了新的文献求助10
9秒前
Hello应助暴躁小龙采纳,获得10
10秒前
shenyu完成签到 ,获得积分10
11秒前
魏源发布了新的文献求助10
11秒前
ovoclive完成签到,获得积分10
12秒前
缥缈冷安完成签到,获得积分10
13秒前
SciGPT应助魏源采纳,获得10
17秒前
暴躁小龙完成签到,获得积分10
17秒前
18秒前
大模型应助勤奋梨愁采纳,获得10
18秒前
zwk完成签到,获得积分10
19秒前
Meidina完成签到,获得积分10
19秒前
微醺小王完成签到,获得积分10
20秒前
21秒前
David发布了新的文献求助20
23秒前
gan完成签到,获得积分10
23秒前
Jasper应助nini采纳,获得10
23秒前
暴躁小龙发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
23秒前
遇见完成签到 ,获得积分10
25秒前
25秒前
只想困瞌睡完成签到,获得积分10
26秒前
tonyhuang完成签到,获得积分10
26秒前
鸣蜩阿六完成签到,获得积分10
28秒前
笃定完成签到,获得积分10
28秒前
41应助潘善若采纳,获得10
28秒前
28秒前
31秒前
momo发布了新的文献求助10
31秒前
whisper完成签到,获得积分10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989297
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253893
捐赠科研通 3270097
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809158