MM-GLCM-CNN: A multi-scale and multi-level based GLCM-CNN for polyp classification

卷积神经网络 人工智能 计算机科学 模式识别(心理学) 深度学习 特征(语言学) 基本事实 特征提取 医学影像学 学习迁移 计算机视觉 哲学 语言学
作者
Shu Zhang,Jinru Wu,Enze Shi,Sigang Yu,Yongfeng Gao,Lihong Connie Li,Licheng R. Kuo,Marc J. Pomeroy,Zhengrong Jerome Liang
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:108: 102257-102257 被引量:12
标识
DOI:10.1016/j.compmedimag.2023.102257
摘要

Distinguishing malignant from benign lesions has significant clinical impacts on both early detection and optimal management of those early detections. Convolutional neural network (CNN) has shown great potential in medical imaging applications due to its powerful feature learning capability. However, it is very challenging to obtain pathological ground truth, addition to collected in vivo medical images, to construct objective training labels for feature learning, leading to the difficulty of performing lesion diagnosis. This is contrary to the requirement that CNN algorithms need a large number of datasets for the training. To explore the ability to learn features from small pathologically-proven datasets for differentiation of malignant from benign polyps, we propose a Multi-scale and Multi-level based Gray-level Co-occurrence Matrix CNN (MM-GLCM-CNN). Specifically, instead of inputting the lesions' medical images, the GLCM, which characterizes the lesion heterogeneity in terms of image texture characteristics, is fed into the MM-GLCN-CNN model for the training. This aims to improve feature extraction by introducing multi-scale and multi-level analysis into the construction of lesion texture characteristic descriptors (LTCDs). To learn and fuse multiple sets of LTCDs from small datasets for lesion diagnosis, we further propose an adaptive multi-input CNN learning framework. Furthermore, an Adaptive Weight Network is used to highlight important information and suppress redundant information after the fusion of the LTCDs. We evaluated the performance of MM-GLCM-CNN by the area under the receiver operating characteristic curve (AUC) merit on small private lesion datasets of colon polyps. The AUC score reaches 93.99% with a gain of 1.49% over current state-of-the-art lesion classification methods on the same dataset. This gain indicates the importance of incorporating lesion characteristic heterogeneity for the prediction of lesion malignancy using small pathologically-proven datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
hellokitty完成签到,获得积分10
7秒前
7秒前
小四发布了新的文献求助10
8秒前
14秒前
西瓜完成签到 ,获得积分10
14秒前
包容的忆灵完成签到 ,获得积分10
17秒前
高兴尔冬发布了新的文献求助10
19秒前
xiang完成签到 ,获得积分0
22秒前
小四完成签到,获得积分10
25秒前
FashionBoy应助slayers采纳,获得30
31秒前
量子星尘发布了新的文献求助10
34秒前
黑眼圈完成签到 ,获得积分10
40秒前
jia完成签到 ,获得积分10
41秒前
如履平川完成签到 ,获得积分10
42秒前
科目三应助忧伤的步美采纳,获得10
43秒前
大椒完成签到 ,获得积分10
46秒前
49秒前
51秒前
wisdom完成签到,获得积分10
51秒前
slayers发布了新的文献求助30
54秒前
55秒前
e746700020完成签到,获得积分10
56秒前
高兴尔冬完成签到,获得积分10
56秒前
李爱国应助不安的秋白采纳,获得10
58秒前
忧伤的步美完成签到,获得积分10
1分钟前
小西完成签到 ,获得积分10
1分钟前
郝老头完成签到,获得积分10
1分钟前
13313完成签到,获得积分10
1分钟前
su完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
slayers完成签到 ,获得积分10
1分钟前
1分钟前
知犯何逆完成签到,获得积分10
1分钟前
Krsky完成签到,获得积分10
1分钟前
ding应助不安的秋白采纳,获得10
1分钟前
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022