MM-GLCM-CNN: A multi-scale and multi-level based GLCM-CNN for polyp classification

卷积神经网络 人工智能 计算机科学 模式识别(心理学) 深度学习 特征(语言学) 基本事实 特征提取 医学影像学 学习迁移 计算机视觉 哲学 语言学
作者
Shu Zhang,Jinru Wu,Enze Shi,Sigang Yu,Yongfeng Gao,Lihong Connie Li,Licheng R. Kuo,Marc J. Pomeroy,Zhengrong Jerome Liang
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:108: 102257-102257 被引量:11
标识
DOI:10.1016/j.compmedimag.2023.102257
摘要

Distinguishing malignant from benign lesions has significant clinical impacts on both early detection and optimal management of those early detections. Convolutional neural network (CNN) has shown great potential in medical imaging applications due to its powerful feature learning capability. However, it is very challenging to obtain pathological ground truth, addition to collected in vivo medical images, to construct objective training labels for feature learning, leading to the difficulty of performing lesion diagnosis. This is contrary to the requirement that CNN algorithms need a large number of datasets for the training. To explore the ability to learn features from small pathologically-proven datasets for differentiation of malignant from benign polyps, we propose a Multi-scale and Multi-level based Gray-level Co-occurrence Matrix CNN (MM-GLCM-CNN). Specifically, instead of inputting the lesions' medical images, the GLCM, which characterizes the lesion heterogeneity in terms of image texture characteristics, is fed into the MM-GLCN-CNN model for the training. This aims to improve feature extraction by introducing multi-scale and multi-level analysis into the construction of lesion texture characteristic descriptors (LTCDs). To learn and fuse multiple sets of LTCDs from small datasets for lesion diagnosis, we further propose an adaptive multi-input CNN learning framework. Furthermore, an Adaptive Weight Network is used to highlight important information and suppress redundant information after the fusion of the LTCDs. We evaluated the performance of MM-GLCM-CNN by the area under the receiver operating characteristic curve (AUC) merit on small private lesion datasets of colon polyps. The AUC score reaches 93.99% with a gain of 1.49% over current state-of-the-art lesion classification methods on the same dataset. This gain indicates the importance of incorporating lesion characteristic heterogeneity for the prediction of lesion malignancy using small pathologically-proven datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
明亮无颜发布了新的文献求助20
1秒前
1秒前
谁还没有个生活完成签到,获得积分10
1秒前
Feng发布了新的文献求助10
1秒前
zzz发布了新的文献求助10
1秒前
MailkMonk发布了新的文献求助10
1秒前
1秒前
xuxuxu完成签到,获得积分10
2秒前
文龙完成签到 ,获得积分10
2秒前
ximomm完成签到,获得积分10
2秒前
无不破哉发布了新的文献求助10
2秒前
2秒前
研友_bZzkR8完成签到,获得积分10
3秒前
XIXI发布了新的文献求助30
3秒前
再沉默发布了新的文献求助10
4秒前
子俞发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
打打应助习习采纳,获得10
5秒前
bluer发布了新的文献求助10
6秒前
7秒前
7秒前
科研通AI5应助无悔呀采纳,获得10
7秒前
毛毛虫完成签到,获得积分10
7秒前
快乐小文完成签到,获得积分10
7秒前
Nooooo发布了新的文献求助10
8秒前
8秒前
贰鸟应助木之以南采纳,获得10
8秒前
无不破哉完成签到,获得积分20
8秒前
Dai WJ发布了新的文献求助10
9秒前
黄大师完成签到 ,获得积分10
9秒前
愤怒的河虾完成签到,获得积分10
9秒前
所所应助XIXI采纳,获得10
9秒前
麻麻发布了新的文献求助10
10秒前
经法发布了新的文献求助10
10秒前
MailkMonk完成签到,获得积分20
10秒前
cici完成签到,获得积分10
11秒前
快乐小文发布了新的文献求助30
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678