TripletMultiDTI: Multimodal representation learning in drug-target interaction prediction with triplet loss function

判别式 计算机科学 人工智能 特征(语言学) 代表(政治) 特征学习 特征向量 机器学习 功能(生物学) 聚类分析 模式识别(心理学) 哲学 语言学 进化生物学 政治 政治学 法学 生物
作者
Alireza Dehghan,Parvin Razzaghi,Karim Abbasi,Sajjad Gharaghani
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:232: 120754-120754 被引量:48
标识
DOI:10.1016/j.eswa.2023.120754
摘要

In drug discovery, drug-target interaction (DTI) plays a crucial role. Identifying DTI in a wet-lab experiment is time-consuming, labor-intensive, and costly. Using reliable computational methods to predict DTI mitigates the enormous costs and time of drug discovery. Deep learning-based methods for predicting DTI have recently gained more attention. In DTI, drug-related and target-related data come in various modalities, which leads researchers to utilize multimodal approaches. It is shown that a discriminative feature representation of the drug-target pair plays the main role in multimodal DTI prediction. To achieve this goal, we propose a new multimodal approach that utilizes triplet loss jointly with task prediction loss. The proposed approach is called TripletMultiDTI. The proposed approach has two main contributions: 1) a new architecture that fuses the multimodal knowledge to predict interaction affinity labels and 2) a new loss function based on the triplet loss to learn more discriminative representation. Triplet loss encourages clustering of feature space such that similar drug-target pairs have the same feature space and dissimilar drug-target pairs have different feature space. As a result of our experiments, we were able to improve prediction performance. To this end, the proposed approach is evaluated on three well-known datasets and compared with state-of-the-art multimodal approaches. According to the obtained results, we can perform better than comparable approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yongnamhui发布了新的文献求助100
2秒前
3秒前
4秒前
烟花应助大力的迎松采纳,获得10
6秒前
zzz完成签到,获得积分10
7秒前
8秒前
GodZ发布了新的文献求助10
9秒前
小小鱼完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
糟糕的立辉完成签到,获得积分10
13秒前
沉静楷瑞完成签到,获得积分10
13秒前
14秒前
大力的迎松完成签到,获得积分20
15秒前
12发布了新的文献求助10
16秒前
BadBoy发布了新的文献求助10
16秒前
17秒前
17秒前
hdblk完成签到,获得积分10
18秒前
lxptsd完成签到,获得积分10
19秒前
20秒前
所所应助茶弥采纳,获得10
20秒前
21秒前
hhyy完成签到 ,获得积分10
21秒前
wennn完成签到 ,获得积分10
23秒前
aaaaaa发布了新的文献求助10
23秒前
24秒前
24秒前
25秒前
azzz完成签到,获得积分10
25秒前
星辰大海应助GGbound采纳,获得10
26秒前
强健的乐天完成签到,获得积分10
26秒前
26秒前
27秒前
田様应助下雨采纳,获得10
28秒前
扶桑发布了新的文献求助10
28秒前
29秒前
kingwill应助万物安生采纳,获得20
30秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962605
求助须知:如何正确求助?哪些是违规求助? 3508565
关于积分的说明 11141892
捐赠科研通 3241353
什么是DOI,文献DOI怎么找? 1791527
邀请新用户注册赠送积分活动 872888
科研通“疑难数据库(出版商)”最低求助积分说明 803501