TripletMultiDTI: Multimodal representation learning in drug-target interaction prediction with triplet loss function

判别式 计算机科学 人工智能 特征(语言学) 代表(政治) 特征学习 特征向量 机器学习 功能(生物学) 聚类分析 模式识别(心理学) 哲学 语言学 进化生物学 政治 政治学 法学 生物
作者
Alireza Dehghan,Parvin Razzaghi,Karim Abbasi,Sajjad Gharaghani
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:232: 120754-120754 被引量:48
标识
DOI:10.1016/j.eswa.2023.120754
摘要

In drug discovery, drug-target interaction (DTI) plays a crucial role. Identifying DTI in a wet-lab experiment is time-consuming, labor-intensive, and costly. Using reliable computational methods to predict DTI mitigates the enormous costs and time of drug discovery. Deep learning-based methods for predicting DTI have recently gained more attention. In DTI, drug-related and target-related data come in various modalities, which leads researchers to utilize multimodal approaches. It is shown that a discriminative feature representation of the drug-target pair plays the main role in multimodal DTI prediction. To achieve this goal, we propose a new multimodal approach that utilizes triplet loss jointly with task prediction loss. The proposed approach is called TripletMultiDTI. The proposed approach has two main contributions: 1) a new architecture that fuses the multimodal knowledge to predict interaction affinity labels and 2) a new loss function based on the triplet loss to learn more discriminative representation. Triplet loss encourages clustering of feature space such that similar drug-target pairs have the same feature space and dissimilar drug-target pairs have different feature space. As a result of our experiments, we were able to improve prediction performance. To this end, the proposed approach is evaluated on three well-known datasets and compared with state-of-the-art multimodal approaches. According to the obtained results, we can perform better than comparable approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助细腻含羞草采纳,获得10
2秒前
歪歪关注了科研通微信公众号
3秒前
3秒前
3秒前
无花果应助幸福台灯采纳,获得10
5秒前
灵兰QAQ完成签到,获得积分10
5秒前
戏谑发布了新的文献求助10
5秒前
LW90完成签到,获得积分10
5秒前
Akim应助roro熊采纳,获得10
5秒前
范范发布了新的文献求助30
6秒前
Zp发布了新的文献求助10
7秒前
7秒前
su完成签到,获得积分20
8秒前
9秒前
且放青山远完成签到,获得积分10
11秒前
和谐耳机完成签到 ,获得积分10
13秒前
明理慕灵应助失眠幼珊采纳,获得10
13秒前
星落枝头完成签到,获得积分10
14秒前
15秒前
牙ya发布了新的文献求助10
15秒前
默默的XJ完成签到,获得积分10
16秒前
16秒前
英俊的铭应助michael采纳,获得10
18秒前
领导范儿应助星落枝头采纳,获得10
18秒前
幸福台灯发布了新的文献求助10
18秒前
younghippo发布了新的文献求助10
20秒前
22秒前
22秒前
23秒前
浮游应助彼得大帝采纳,获得10
23秒前
Zp发布了新的文献求助10
25秒前
。。。完成签到,获得积分10
25秒前
26秒前
Tingting完成签到 ,获得积分10
26秒前
wwho_O完成签到 ,获得积分10
26秒前
飞阳完成签到,获得积分10
26秒前
26秒前
歪歪发布了新的文献求助10
27秒前
ceeray23应助沉静的含海采纳,获得10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565622
求助须知:如何正确求助?哪些是违规求助? 4650680
关于积分的说明 14692351
捐赠科研通 4592670
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463281