TripletMultiDTI: Multimodal representation learning in drug-target interaction prediction with triplet loss function

判别式 计算机科学 人工智能 特征(语言学) 代表(政治) 特征学习 特征向量 机器学习 功能(生物学) 聚类分析 模式识别(心理学) 哲学 语言学 进化生物学 政治 政治学 法学 生物
作者
Alireza Dehghan,Parvin Razzaghi,Karim Abbasi,Sajjad Gharaghani
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:232: 120754-120754 被引量:48
标识
DOI:10.1016/j.eswa.2023.120754
摘要

In drug discovery, drug-target interaction (DTI) plays a crucial role. Identifying DTI in a wet-lab experiment is time-consuming, labor-intensive, and costly. Using reliable computational methods to predict DTI mitigates the enormous costs and time of drug discovery. Deep learning-based methods for predicting DTI have recently gained more attention. In DTI, drug-related and target-related data come in various modalities, which leads researchers to utilize multimodal approaches. It is shown that a discriminative feature representation of the drug-target pair plays the main role in multimodal DTI prediction. To achieve this goal, we propose a new multimodal approach that utilizes triplet loss jointly with task prediction loss. The proposed approach is called TripletMultiDTI. The proposed approach has two main contributions: 1) a new architecture that fuses the multimodal knowledge to predict interaction affinity labels and 2) a new loss function based on the triplet loss to learn more discriminative representation. Triplet loss encourages clustering of feature space such that similar drug-target pairs have the same feature space and dissimilar drug-target pairs have different feature space. As a result of our experiments, we were able to improve prediction performance. To this end, the proposed approach is evaluated on three well-known datasets and compared with state-of-the-art multimodal approaches. According to the obtained results, we can perform better than comparable approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿悦发布了新的文献求助10
1秒前
阿土完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助30
3秒前
Xu发布了新的文献求助10
3秒前
3秒前
6秒前
Czt完成签到,获得积分10
7秒前
7秒前
小透明发布了新的文献求助10
7秒前
Xu完成签到,获得积分10
9秒前
9秒前
10秒前
soso完成签到,获得积分10
10秒前
10秒前
李爱国应助神雕001采纳,获得10
10秒前
12秒前
12秒前
小雨完成签到,获得积分10
12秒前
12秒前
搜集达人应助HH采纳,获得10
13秒前
soso发布了新的文献求助10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
Owen应助兔孖采纳,获得10
13秒前
14秒前
chenyun完成签到,获得积分10
14秒前
ccc关闭了ccc文献求助
14秒前
Czt发布了新的文献求助10
14秒前
wanci应助知性的奎采纳,获得10
15秒前
15秒前
15秒前
个性严青发布了新的文献求助10
16秒前
17秒前
ke发布了新的文献求助10
17秒前
赘婿应助冯俊驰采纳,获得10
18秒前
袁江堰完成签到 ,获得积分10
18秒前
Crisp完成签到,获得积分10
20秒前
21秒前
alili完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
Cowries - A Guide to the Gastropod Family Cypraeidae. Volume 2: Shells and Animals 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950964
求助须知:如何正确求助?哪些是违规求助? 4213785
关于积分的说明 13105631
捐赠科研通 3995556
什么是DOI,文献DOI怎么找? 2186991
邀请新用户注册赠送积分活动 1202197
关于科研通互助平台的介绍 1115436