亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TripletMultiDTI: Multimodal representation learning in drug-target interaction prediction with triplet loss function

判别式 计算机科学 人工智能 特征(语言学) 代表(政治) 特征学习 特征向量 机器学习 功能(生物学) 聚类分析 模式识别(心理学) 哲学 语言学 进化生物学 政治 政治学 法学 生物
作者
Alireza Dehghan,Parvin Razzaghi,Karim Abbasi,Sajjad Gharaghani
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:232: 120754-120754 被引量:48
标识
DOI:10.1016/j.eswa.2023.120754
摘要

In drug discovery, drug-target interaction (DTI) plays a crucial role. Identifying DTI in a wet-lab experiment is time-consuming, labor-intensive, and costly. Using reliable computational methods to predict DTI mitigates the enormous costs and time of drug discovery. Deep learning-based methods for predicting DTI have recently gained more attention. In DTI, drug-related and target-related data come in various modalities, which leads researchers to utilize multimodal approaches. It is shown that a discriminative feature representation of the drug-target pair plays the main role in multimodal DTI prediction. To achieve this goal, we propose a new multimodal approach that utilizes triplet loss jointly with task prediction loss. The proposed approach is called TripletMultiDTI. The proposed approach has two main contributions: 1) a new architecture that fuses the multimodal knowledge to predict interaction affinity labels and 2) a new loss function based on the triplet loss to learn more discriminative representation. Triplet loss encourages clustering of feature space such that similar drug-target pairs have the same feature space and dissimilar drug-target pairs have different feature space. As a result of our experiments, we were able to improve prediction performance. To this end, the proposed approach is evaluated on three well-known datasets and compared with state-of-the-art multimodal approaches. According to the obtained results, we can perform better than comparable approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
qc发布了新的文献求助10
8秒前
12秒前
15秒前
白山发布了新的文献求助10
16秒前
任性学姐发布了新的文献求助10
21秒前
李爱国应助qc采纳,获得10
25秒前
白山完成签到,获得积分10
27秒前
大渣饼完成签到 ,获得积分10
33秒前
今后应助任性学姐采纳,获得10
33秒前
小蘑菇应助读书的时候采纳,获得30
35秒前
qc完成签到,获得积分20
36秒前
41秒前
柠栀完成签到 ,获得积分10
42秒前
养虎人发布了新的文献求助10
48秒前
温柔锦程发布了新的文献求助10
49秒前
毛毛完成签到,获得积分10
57秒前
闪闪的晓丝完成签到 ,获得积分10
1分钟前
1分钟前
魔幻的芳完成签到,获得积分10
1分钟前
火星上的宝马完成签到,获得积分10
1分钟前
orixero应助Guozixin采纳,获得10
1分钟前
悲凉的忆南完成签到,获得积分10
1分钟前
陈旧完成签到,获得积分10
1分钟前
欣欣子完成签到,获得积分10
1分钟前
sunstar完成签到,获得积分10
1分钟前
yxl完成签到,获得积分10
1分钟前
可耐的盈完成签到,获得积分10
1分钟前
绿毛水怪完成签到,获得积分10
1分钟前
FashionBoy应助温柔锦程采纳,获得10
1分钟前
bnbn应助xzccc采纳,获得10
1分钟前
1分钟前
lsc完成签到,获得积分10
1分钟前
小fei完成签到,获得积分10
1分钟前
xiaoxie完成签到 ,获得积分10
1分钟前
1分钟前
嘻嘻完成签到,获得积分10
1分钟前
麻辣薯条完成签到,获得积分10
1分钟前
zxcvvbb1001完成签到 ,获得积分10
1分钟前
慕青应助BARRYZZ采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739381
求助须知:如何正确求助?哪些是违规求助? 5385826
关于积分的说明 15339673
捐赠科研通 4881965
什么是DOI,文献DOI怎么找? 2624032
邀请新用户注册赠送积分活动 1572725
关于科研通互助平台的介绍 1529527