过电位
材料科学
多孔性
化学工程
电解水
钙钛矿(结构)
析氧
电流密度
电解
纳米纤维
电化学
分解水
离子交换
比表面积
无机化学
电极
纳米技术
复合材料
离子
催化作用
化学
电解质
物理化学
光催化
有机化学
生物化学
量子力学
工程类
物理
作者
Lu Li,Zhilin Zheng,Jiaxing Li,Yongbiao Mu,Yameng Wang,Zebing Huang,Yiping Xiao,Haitao Huang,Shuai Wang,Gao Chen,Lin Zeng
出处
期刊:Small
[Wiley]
日期:2023-05-24
卷期号:19 (38)
被引量:5
标识
DOI:10.1002/smll.202301261
摘要
Perovskite oxides stand out as emerging oxygen evolution reaction (OER) catalysts on account of their effective electrocatalytic performance and low costs. Nevertheless, perovskite oxides suffer from severe bubble overpotential and inhibited electrochemical performance in large current densities due to their small specific surface areas and structural compactness. Herein, the study highlights the electrospun nickel-substituted La0.5 Sr0.5 FeO3-δ (LSF) porous perovskite nanofibers, that is, La0.5 Sr0.5 Fe1-x Nix O3-δ (denoted as ES-LSFN-x, x = 0, 0.1, 0.3, and 0.5), as high-performance OER electrocatalysts. The most effective La0.5 Sr0.5 Fe0.5 Ni0.5 O3-δ (ES-LSFN-0.5) nanofibers suggest a larger specific surface area, higher porosity, and faster mass transfer than the counterpart sample prepared by conventional sol-gel method (SG-LSFN-0.5), showing notably increased geometric and intrinsic activities. The bubble visualization results demonstrate that the enriched and nano-sized porosity of ES-LSFN-0.5 enables reinforced aerophobicity and rapid detachment of oxygen bubbles, thereby reducing the bubble overpotential and enhancing the electrochemical performance. As a result, the ES-LSFN-0.5-based anion exchange membrane water electrolysis delivers a superior stability of 100 h while the SG-LSFN-0.5 counterpart degrades rapidly within 20 h under a current density of 100 mA cm-2 . The results highlight the advantage of porous electrocatalysts in optimizing the performance of large current density water electrolysis devices by reducing the bubble overpotential.
科研通智能强力驱动
Strongly Powered by AbleSci AI