亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning-based approach to predict multiple genetic mutations in colorectal and lung cancer tissues using hematoxylin and eosin-stained whole-slide images.

H&E染色 微卫星不稳定性 结直肠癌 数字化病理学 医学 污渍 腺癌 接收机工作特性 计算生物学 深度学习 克拉斯 人工智能 癌症 病理 基因 生物 免疫组织化学 遗传学 计算机科学 染色 微卫星 内科学 等位基因
作者
Teppei Konishi,Mateusz Grynkiewicz,Keita Saito,Takuma Kobayashi,Akiteru Goto,Michinobu Umakoshi,Takashi Iwata,Hiroshi Nishio,Yuki Katoh,Tomonobu Fujita,Tomoya Matsui,Masaki Sugawara,Hiroyuki Sano
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:41 (16_suppl): 1549-1549
标识
DOI:10.1200/jco.2023.41.16_suppl.1549
摘要

1549 Background: The presence of genetic mutations is a vital prognostic in many types of cancer. However, genomic testing is expensive and challenging to perform. In contrast, hematoxylin and eosin (H&E) staining is relatively inexpensive and straightforward. Thus, in this study, we propose a method of predicting the presence of genetic mutations using H&E-stained whole-slide images (WSIs). Methods: We divided each H&E–stained WSI into small pieces or “patches.” We used a deep learning model to classify each patch based on the presence of tumor-containing regions. We then extracted image features from each tumor-containing patch using a deep learning-based feature extractor. We created image features for the entire WSI by concatenating the features of the patches. We then trained genetic mutation classification models using the WSI features as the input and the presence or absence of genetic mutations as the output. Finally, we evaluated the performance of these models using the area under the receiver operating characteristic curve (AUC). Results: First, we evaluated our methods using The Cancer Genome Atlas (TCGA) colorectal cancer dataset. We used H&E–stained WSIs and data associated with Microsatellite Instability ( MSI) and BRAF gene mutations, which are directly relevant to therapeutic strategies, obtained from an independent clinical cohort of 566 patients with TCGA colon and rectum adenocarcinoma. We divided the data into training, validation, and test splits, comprising 367, 90, and 109 patients, respectively. We used the training and validation splits for model training and selection, and the test split for model evaluation. The AUC values of the classification models and associated 95% confidence intervals (CIs) were 0.721 (CI = 0.572–0.870) for MSI and 0.712 (CI = 0.547–0.877) for BRAF gene mutations. We also applied our approach to MUC16, KRAS, and ALK mutations using the TCGA lung cancer dataset. We divided 909 TCGA lung adenocarcinoma and lung squamous cell carcinoma patients into training, validation, and test splits, comprising 582, 146, and 181 patients, respectively. In contrast with those of the colorectal dataset, WSI image features were generated using all patches. The AUC values on the test splits were 0.897 (CI = 0.85–0.95) for MUC16, 0.845 (CI = 0.75–0.94) for KRAS, and 0.756 (CI = 0.57–0.94) for ALK mutations. Conclusions: We proposed an approach to predict the presence of genetic mutations using only H&E–stained WSIs and evaluated its performance using colorectal and lung cancer datasets. Our model has the potential to predict the presence of certain genetic mutations with superior performance. These predictions can be used to improve the accuracy of prognostic prediction using WSIs alone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助spark810采纳,获得10
23秒前
43秒前
zai完成签到 ,获得积分20
1分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
2分钟前
jm发布了新的文献求助10
2分钟前
李健应助jm采纳,获得10
2分钟前
3分钟前
白桦发布了新的文献求助10
3分钟前
Xiaxia完成签到,获得积分10
3分钟前
mochalv123完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
领导范儿应助愿祖国富强采纳,获得10
4分钟前
康康XY发布了新的文献求助10
4分钟前
隐形曼青应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
dxljlxgcgc完成签到,获得积分10
8分钟前
chiazy完成签到 ,获得积分10
11分钟前
默默孱完成签到 ,获得积分10
11分钟前
早晚完成签到 ,获得积分10
13分钟前
唠叨的天亦完成签到 ,获得积分10
15分钟前
mengyuhuan完成签到 ,获得积分0
17分钟前
AUGKING27完成签到 ,获得积分10
17分钟前
yinlao完成签到,获得积分10
17分钟前
cxg完成签到,获得积分10
17分钟前
cxg发布了新的文献求助10
17分钟前
明亮的问薇完成签到,获得积分10
18分钟前
JamesPei应助科研通管家采纳,获得10
18分钟前
18分钟前
完美世界应助烽烽烽采纳,获得30
18分钟前
18分钟前
烽烽烽发布了新的文献求助30
18分钟前
19分钟前
Ambi发布了新的文献求助10
19分钟前
19分钟前
汉堡包应助李小猫采纳,获得10
19分钟前
Ambi完成签到,获得积分10
19分钟前
19分钟前
高分求助中
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121645
求助须知:如何正确求助?哪些是违规求助? 2772108
关于积分的说明 7710913
捐赠科研通 2427435
什么是DOI,文献DOI怎么找? 1289328
科研通“疑难数据库(出版商)”最低求助积分说明 621386
版权声明 600145