已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning-based approach to predict multiple genetic mutations in colorectal and lung cancer tissues using hematoxylin and eosin-stained whole-slide images.

H&E染色 微卫星不稳定性 结直肠癌 数字化病理学 医学 污渍 腺癌 接收机工作特性 计算生物学 深度学习 克拉斯 人工智能 癌症 病理 基因 生物 免疫组织化学 遗传学 计算机科学 染色 微卫星 内科学 等位基因
作者
Teppei Konishi,Mateusz Grynkiewicz,Keita Saito,Takuma Kobayashi,Akiteru Goto,Michinobu Umakoshi,Takashi Iwata,Hiroshi Nishio,Yuki Katoh,Tomonobu Fujita,Tomoya Matsui,Masaki Sugawara,Hiroyuki Sano
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:41 (16_suppl): 1549-1549
标识
DOI:10.1200/jco.2023.41.16_suppl.1549
摘要

1549 Background: The presence of genetic mutations is a vital prognostic in many types of cancer. However, genomic testing is expensive and challenging to perform. In contrast, hematoxylin and eosin (H&E) staining is relatively inexpensive and straightforward. Thus, in this study, we propose a method of predicting the presence of genetic mutations using H&E-stained whole-slide images (WSIs). Methods: We divided each H&E–stained WSI into small pieces or “patches.” We used a deep learning model to classify each patch based on the presence of tumor-containing regions. We then extracted image features from each tumor-containing patch using a deep learning-based feature extractor. We created image features for the entire WSI by concatenating the features of the patches. We then trained genetic mutation classification models using the WSI features as the input and the presence or absence of genetic mutations as the output. Finally, we evaluated the performance of these models using the area under the receiver operating characteristic curve (AUC). Results: First, we evaluated our methods using The Cancer Genome Atlas (TCGA) colorectal cancer dataset. We used H&E–stained WSIs and data associated with Microsatellite Instability ( MSI) and BRAF gene mutations, which are directly relevant to therapeutic strategies, obtained from an independent clinical cohort of 566 patients with TCGA colon and rectum adenocarcinoma. We divided the data into training, validation, and test splits, comprising 367, 90, and 109 patients, respectively. We used the training and validation splits for model training and selection, and the test split for model evaluation. The AUC values of the classification models and associated 95% confidence intervals (CIs) were 0.721 (CI = 0.572–0.870) for MSI and 0.712 (CI = 0.547–0.877) for BRAF gene mutations. We also applied our approach to MUC16, KRAS, and ALK mutations using the TCGA lung cancer dataset. We divided 909 TCGA lung adenocarcinoma and lung squamous cell carcinoma patients into training, validation, and test splits, comprising 582, 146, and 181 patients, respectively. In contrast with those of the colorectal dataset, WSI image features were generated using all patches. The AUC values on the test splits were 0.897 (CI = 0.85–0.95) for MUC16, 0.845 (CI = 0.75–0.94) for KRAS, and 0.756 (CI = 0.57–0.94) for ALK mutations. Conclusions: We proposed an approach to predict the presence of genetic mutations using only H&E–stained WSIs and evaluated its performance using colorectal and lung cancer datasets. Our model has the potential to predict the presence of certain genetic mutations with superior performance. These predictions can be used to improve the accuracy of prognostic prediction using WSIs alone.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈咪咪完成签到 ,获得积分10
1秒前
Orange应助cjlinhunu采纳,获得10
1秒前
JeromineJade发布了新的文献求助10
3秒前
酸海椒发布了新的文献求助10
4秒前
Lee发布了新的文献求助10
5秒前
5秒前
情怀应助JaneChen采纳,获得30
6秒前
潇洒的觅柔完成签到,获得积分10
7秒前
Mic应助舒服的水壶采纳,获得10
8秒前
嘻嘻发布了新的文献求助10
9秒前
9秒前
9秒前
微风完成签到 ,获得积分10
9秒前
10秒前
12秒前
ww417发布了新的文献求助10
13秒前
13秒前
13秒前
科研通AI6.1应助gndd采纳,获得30
14秒前
斯文败类应助诚心文博采纳,获得10
15秒前
皮代谷发布了新的文献求助10
15秒前
15秒前
16秒前
456244yyy发布了新的文献求助10
18秒前
大模型应助攀登采纳,获得30
18秒前
cjlinhunu发布了新的文献求助10
21秒前
NexusExplorer应助wsw111采纳,获得10
21秒前
21秒前
21秒前
JaneChen发布了新的文献求助30
22秒前
田様应助皮代谷采纳,获得10
23秒前
24秒前
东方欲晓关注了科研通微信公众号
27秒前
27秒前
柒_l发布了新的文献求助10
29秒前
科研通AI6.1应助29采纳,获得10
29秒前
孙皓阳发布了新的文献求助10
29秒前
30秒前
调皮飞雪发布了新的文献求助10
30秒前
义气的钥匙完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771671
求助须知:如何正确求助?哪些是违规求助? 5593024
关于积分的说明 15428138
捐赠科研通 4904964
什么是DOI,文献DOI怎么找? 2639092
邀请新用户注册赠送积分活动 1586960
关于科研通互助平台的介绍 1541911