Big-Data Driven Framework to Estimate Vehicle Volume Based on Mobile Device Location Data

计算机科学 地图匹配 实时计算 体积热力学 地理空间分析 人口 全球定位系统 运输工程 数据挖掘 工程类 地理 电信 物理 人口学 地图学 量子力学 社会学
作者
Mofeng Yang,Weiyu Luo,Mohammad Ashoori,Jina Mahmoudi,Chenfeng Xiong,Jiawei Lu,Guangchen Zhao,Saeed Saleh Namadi,Songhua Hu,Aliakbar Kabiri,Ya Ji
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:2678 (2): 352-365 被引量:7
标识
DOI:10.1177/03611981231174240
摘要

Vehicle volume serves as a critical metric and the fundamental basis for traffic signal control, transportation project prioritization, road maintenance planning, and more. Traditional methods of quantifying vehicle volume rely on manual counting, video cameras, and loop detectors at a limited number of locations. These efforts require significant labor and cost for expansions. Researchers and private sector companies have also explored alternative solutions, such as probe vehicle data, although this still suffers from a low penetration rate. In recent years, along with the technological advancement in mobile sensors and mobile networks, the quantity of mobile device location data (MDLD) has been growing dramatically in spatiotemporal coverage of the population and its mobility. This paper presents a big-data driven framework that can ingest terabytes of MDLD and estimate vehicle volume over a larger geographical area with a larger sample size. The proposed framework first employs a series of cloud-based computational algorithms to extract multimodal trajectories and trip rosters. A scalable map matching and routing algorithm is then applied to snap and route vehicle trajectories to the roadway network. The observed vehicle counts on each roadway segment are weighted and calibrated against ground truth control totals, that is, annual vehicle-miles traveled and annual average daily traffic. The proposed framework is implemented on the all-street network in the State of Maryland using MDLD for the entire year of 2019. The results demonstrate that our proposed framework produces reliable vehicle volume and also its transferability and generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜忆山发布了新的文献求助10
刚刚
所所应助lili采纳,获得10
1秒前
彪壮的金毛完成签到,获得积分10
1秒前
灵巧的馒头完成签到,获得积分10
1秒前
3秒前
4秒前
NexusExplorer应助liwen采纳,获得10
4秒前
4秒前
5秒前
5秒前
共享精神应助lllllll采纳,获得10
5秒前
ning完成签到,获得积分10
6秒前
十元钱芝麻完成签到,获得积分10
6秒前
冷艳的无极完成签到,获得积分20
7秒前
酷波er应助执着的可仁采纳,获得10
7秒前
7秒前
22完成签到,获得积分10
9秒前
陈陈发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
凝子老师发布了新的文献求助10
10秒前
李llll完成签到,获得积分10
10秒前
郭志倩发布了新的文献求助10
10秒前
雪白发卡完成签到,获得积分10
10秒前
豆豆哥发布了新的文献求助10
10秒前
无限寻雪完成签到 ,获得积分10
10秒前
无情的水蓉完成签到,获得积分10
11秒前
Bob_Hello关注了科研通微信公众号
12秒前
12秒前
13秒前
夜盏丿完成签到,获得积分10
13秒前
13秒前
甜蜜邑发布了新的文献求助10
13秒前
14秒前
研友_ndvWy8完成签到,获得积分10
14秒前
15秒前
上官若男应助22采纳,获得10
16秒前
zhong完成签到,获得积分10
16秒前
17秒前
所所应助凝子老师采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4956927
求助须知:如何正确求助?哪些是违规求助? 4218598
关于积分的说明 13130015
捐赠科研通 4001436
什么是DOI,文献DOI怎么找? 2189766
邀请新用户注册赠送积分活动 1204746
关于科研通互助平台的介绍 1116414