Big-Data Driven Framework to Estimate Vehicle Volume Based on Mobile Device Location Data

计算机科学 地图匹配 实时计算 体积热力学 地理空间分析 人口 全球定位系统 运输工程 数据挖掘 工程类 地理 电信 物理 人口学 地图学 量子力学 社会学
作者
Mofeng Yang,Weiyu Luo,Mohammad Ashoori,Jina Mahmoudi,Chenfeng Xiong,Jiawei Lu,Guangchen Zhao,Saeed Saleh Namadi,Songhua Hu,Aliakbar Kabiri,Ya Ji
出处
期刊:Transportation Research Record [SAGE]
卷期号:2678 (2): 352-365 被引量:7
标识
DOI:10.1177/03611981231174240
摘要

Vehicle volume serves as a critical metric and the fundamental basis for traffic signal control, transportation project prioritization, road maintenance planning, and more. Traditional methods of quantifying vehicle volume rely on manual counting, video cameras, and loop detectors at a limited number of locations. These efforts require significant labor and cost for expansions. Researchers and private sector companies have also explored alternative solutions, such as probe vehicle data, although this still suffers from a low penetration rate. In recent years, along with the technological advancement in mobile sensors and mobile networks, the quantity of mobile device location data (MDLD) has been growing dramatically in spatiotemporal coverage of the population and its mobility. This paper presents a big-data driven framework that can ingest terabytes of MDLD and estimate vehicle volume over a larger geographical area with a larger sample size. The proposed framework first employs a series of cloud-based computational algorithms to extract multimodal trajectories and trip rosters. A scalable map matching and routing algorithm is then applied to snap and route vehicle trajectories to the roadway network. The observed vehicle counts on each roadway segment are weighted and calibrated against ground truth control totals, that is, annual vehicle-miles traveled and annual average daily traffic. The proposed framework is implemented on the all-street network in the State of Maryland using MDLD for the entire year of 2019. The results demonstrate that our proposed framework produces reliable vehicle volume and also its transferability and generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何苗完成签到,获得积分20
1秒前
自觉的迎松完成签到 ,获得积分10
1秒前
1秒前
xhh完成签到,获得积分10
1秒前
可别熬夜了Ar完成签到,获得积分10
2秒前
请安静发布了新的文献求助10
2秒前
小福宝完成签到,获得积分10
2秒前
巴木的海完成签到,获得积分10
2秒前
3秒前
int0完成签到 ,获得积分10
3秒前
garlic完成签到,获得积分10
4秒前
liuye0202发布了新的文献求助10
4秒前
nanjiren发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
何苗发布了新的文献求助10
4秒前
Ava应助lvjing采纳,获得10
5秒前
5秒前
愉快的孤晴完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
shinnosuke应助锅巴采纳,获得10
6秒前
6秒前
请安静完成签到,获得积分10
6秒前
积极问晴完成签到,获得积分10
7秒前
dolphin完成签到 ,获得积分0
8秒前
8秒前
mirror完成签到,获得积分10
8秒前
打打应助天天采纳,获得10
9秒前
研友_VZG7GZ应助shinble采纳,获得20
9秒前
Vincent发布了新的文献求助10
9秒前
up完成签到,获得积分10
9秒前
wakkki发布了新的文献求助10
10秒前
拼搏的小鱼完成签到 ,获得积分10
10秒前
ZeroL完成签到 ,获得积分0
10秒前
zz0429完成签到 ,获得积分10
11秒前
Panting完成签到,获得积分10
12秒前
12秒前
Zzzhou23完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427530
求助须知:如何正确求助?哪些是违规求助? 4541163
关于积分的说明 14176100
捐赠科研通 4458987
什么是DOI,文献DOI怎么找? 2445190
邀请新用户注册赠送积分活动 1436397
关于科研通互助平台的介绍 1413758