Big-Data Driven Framework to Estimate Vehicle Volume Based on Mobile Device Location Data

计算机科学 地图匹配 实时计算 体积热力学 地理空间分析 人口 全球定位系统 运输工程 数据挖掘 工程类 地理 电信 物理 人口学 地图学 量子力学 社会学
作者
Mofeng Yang,Weiyu Luo,Mohammad Ashoori,Jina Mahmoudi,Chenfeng Xiong,Jiawei Lu,Guangchen Zhao,Saeed Saleh Namadi,Songhua Hu,Aliakbar Kabiri,Ya Ji
出处
期刊:Transportation Research Record [SAGE]
卷期号:2678 (2): 352-365 被引量:7
标识
DOI:10.1177/03611981231174240
摘要

Vehicle volume serves as a critical metric and the fundamental basis for traffic signal control, transportation project prioritization, road maintenance planning, and more. Traditional methods of quantifying vehicle volume rely on manual counting, video cameras, and loop detectors at a limited number of locations. These efforts require significant labor and cost for expansions. Researchers and private sector companies have also explored alternative solutions, such as probe vehicle data, although this still suffers from a low penetration rate. In recent years, along with the technological advancement in mobile sensors and mobile networks, the quantity of mobile device location data (MDLD) has been growing dramatically in spatiotemporal coverage of the population and its mobility. This paper presents a big-data driven framework that can ingest terabytes of MDLD and estimate vehicle volume over a larger geographical area with a larger sample size. The proposed framework first employs a series of cloud-based computational algorithms to extract multimodal trajectories and trip rosters. A scalable map matching and routing algorithm is then applied to snap and route vehicle trajectories to the roadway network. The observed vehicle counts on each roadway segment are weighted and calibrated against ground truth control totals, that is, annual vehicle-miles traveled and annual average daily traffic. The proposed framework is implemented on the all-street network in the State of Maryland using MDLD for the entire year of 2019. The results demonstrate that our proposed framework produces reliable vehicle volume and also its transferability and generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiangling1116发布了新的文献求助10
刚刚
奋斗画板完成签到,获得积分10
1秒前
1秒前
郑力阳发布了新的文献求助10
1秒前
快乐的白秋应助受伤破茧采纳,获得20
2秒前
2秒前
2秒前
搜集达人应助zy采纳,获得10
2秒前
奋斗画板发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
优秀谷波发布了新的文献求助10
5秒前
研友_LJGoXn完成签到,获得积分10
5秒前
5秒前
大吉发布了新的文献求助10
6秒前
6秒前
一天俩煎蛋完成签到,获得积分20
6秒前
7秒前
xiao完成签到,获得积分20
9秒前
研友_LJGoXn发布了新的文献求助30
9秒前
科研小白完成签到,获得积分10
12秒前
亚胺培南西司他丁钠完成签到 ,获得积分10
12秒前
13秒前
13秒前
zhengguibin完成签到 ,获得积分10
14秒前
11完成签到,获得积分10
14秒前
大龙哥886应助hAFMET采纳,获得10
15秒前
大吉完成签到,获得积分10
16秒前
上官若男应助katsuras采纳,获得10
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
18秒前
愉快板凳发布了新的文献求助20
18秒前
休比里斯老板完成签到,获得积分10
19秒前
乐乐应助hyf采纳,获得10
20秒前
wow发布了新的文献求助10
21秒前
脑洞疼应助senli2018采纳,获得10
23秒前
郑力阳完成签到,获得积分10
23秒前
端庄南莲发布了新的文献求助10
23秒前
华仔应助害羞冰蓝采纳,获得10
24秒前
Hello应助百里烬言采纳,获得30
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421305
求助须知:如何正确求助?哪些是违规求助? 4536294
关于积分的说明 14153173
捐赠科研通 4452894
什么是DOI,文献DOI怎么找? 2442643
邀请新用户注册赠送积分活动 1434026
关于科研通互助平台的介绍 1411219