Big-Data Driven Framework to Estimate Vehicle Volume Based on Mobile Device Location Data

计算机科学 地图匹配 实时计算 体积热力学 地理空间分析 人口 全球定位系统 运输工程 数据挖掘 工程类 地理 电信 地图学 量子力学 物理 社会学 人口学
作者
Mofeng Yang,Weiyu Luo,Mohammad Ashoori,Jina Mahmoudi,Chenfeng Xiong,Jiawei Lu,Guangchen Zhao,Saeed Saleh Namadi,Songhua Hu,Aliakbar Kabiri,Ya Ji
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:2678 (2): 352-365 被引量:7
标识
DOI:10.1177/03611981231174240
摘要

Vehicle volume serves as a critical metric and the fundamental basis for traffic signal control, transportation project prioritization, road maintenance planning, and more. Traditional methods of quantifying vehicle volume rely on manual counting, video cameras, and loop detectors at a limited number of locations. These efforts require significant labor and cost for expansions. Researchers and private sector companies have also explored alternative solutions, such as probe vehicle data, although this still suffers from a low penetration rate. In recent years, along with the technological advancement in mobile sensors and mobile networks, the quantity of mobile device location data (MDLD) has been growing dramatically in spatiotemporal coverage of the population and its mobility. This paper presents a big-data driven framework that can ingest terabytes of MDLD and estimate vehicle volume over a larger geographical area with a larger sample size. The proposed framework first employs a series of cloud-based computational algorithms to extract multimodal trajectories and trip rosters. A scalable map matching and routing algorithm is then applied to snap and route vehicle trajectories to the roadway network. The observed vehicle counts on each roadway segment are weighted and calibrated against ground truth control totals, that is, annual vehicle-miles traveled and annual average daily traffic. The proposed framework is implemented on the all-street network in the State of Maryland using MDLD for the entire year of 2019. The results demonstrate that our proposed framework produces reliable vehicle volume and also its transferability and generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我爱科研完成签到,获得积分10
1秒前
sapphire应助hcc采纳,获得10
1秒前
咕噜咕噜发布了新的文献求助10
2秒前
善学以致用应助wqm采纳,获得10
2秒前
戚薇发布了新的文献求助20
3秒前
3秒前
爱莉希雅发布了新的文献求助10
3秒前
乌冬面发布了新的文献求助10
3秒前
星辰大海应助江大橘采纳,获得10
3秒前
4秒前
4秒前
科研通AI5应助超级凡桃采纳,获得10
4秒前
林123a发布了新的文献求助10
5秒前
好运接收集成器完成签到,获得积分10
6秒前
反方向的钟完成签到,获得积分10
6秒前
6秒前
个性的紫菜应助wangking采纳,获得30
6秒前
wjh完成签到,获得积分10
6秒前
Xinwen0322发布了新的文献求助10
6秒前
顾矜应助MaChent采纳,获得10
7秒前
7秒前
Zymiao发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
M1982完成签到,获得积分20
8秒前
彩色耳机发布了新的文献求助10
9秒前
传奇3应助爱莉希雅采纳,获得10
9秒前
9秒前
一期一会完成签到,获得积分10
10秒前
陈军发布了新的文献求助10
10秒前
10秒前
8R60d8应助11111111111111采纳,获得20
10秒前
量子星尘发布了新的文献求助10
10秒前
飞飞发布了新的文献求助10
10秒前
11秒前
shenzhou9发布了新的文献求助10
11秒前
11秒前
个性的紫菜应助戚薇采纳,获得20
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646