Big-Data Driven Framework to Estimate Vehicle Volume Based on Mobile Device Location Data

计算机科学 地图匹配 实时计算 体积热力学 地理空间分析 人口 全球定位系统 运输工程 数据挖掘 工程类 地理 电信 物理 人口学 地图学 量子力学 社会学
作者
Mofeng Yang,Weiyu Luo,Mohammad Ashoori,Jina Mahmoudi,Chenfeng Xiong,Jiawei Lu,Guangchen Zhao,Saeed Saleh Namadi,Songhua Hu,Aliakbar Kabiri,Ya Ji
出处
期刊:Transportation Research Record [SAGE]
卷期号:2678 (2): 352-365 被引量:7
标识
DOI:10.1177/03611981231174240
摘要

Vehicle volume serves as a critical metric and the fundamental basis for traffic signal control, transportation project prioritization, road maintenance planning, and more. Traditional methods of quantifying vehicle volume rely on manual counting, video cameras, and loop detectors at a limited number of locations. These efforts require significant labor and cost for expansions. Researchers and private sector companies have also explored alternative solutions, such as probe vehicle data, although this still suffers from a low penetration rate. In recent years, along with the technological advancement in mobile sensors and mobile networks, the quantity of mobile device location data (MDLD) has been growing dramatically in spatiotemporal coverage of the population and its mobility. This paper presents a big-data driven framework that can ingest terabytes of MDLD and estimate vehicle volume over a larger geographical area with a larger sample size. The proposed framework first employs a series of cloud-based computational algorithms to extract multimodal trajectories and trip rosters. A scalable map matching and routing algorithm is then applied to snap and route vehicle trajectories to the roadway network. The observed vehicle counts on each roadway segment are weighted and calibrated against ground truth control totals, that is, annual vehicle-miles traveled and annual average daily traffic. The proposed framework is implemented on the all-street network in the State of Maryland using MDLD for the entire year of 2019. The results demonstrate that our proposed framework produces reliable vehicle volume and also its transferability and generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1459完成签到,获得积分10
1秒前
白日梦想家完成签到 ,获得积分10
2秒前
2秒前
ppf完成签到,获得积分20
3秒前
3秒前
欣喜代秋发布了新的文献求助10
4秒前
xiaoluoluo完成签到,获得积分10
5秒前
勤奋日记本完成签到,获得积分10
5秒前
青柚完成签到 ,获得积分10
6秒前
6秒前
磊少完成签到,获得积分10
8秒前
婷婷完成签到,获得积分20
8秒前
酷波er应助求助文献采纳,获得10
11秒前
王一一完成签到,获得积分10
11秒前
tqy完成签到,获得积分10
13秒前
欣喜代秋完成签到,获得积分10
13秒前
Altria发布了新的文献求助10
13秒前
乐乐应助醉熏的沛容采纳,获得10
14秒前
14秒前
14秒前
芋芋完成签到,获得积分10
14秒前
15秒前
gyhk完成签到,获得积分10
17秒前
小电龙阿索卡关注了科研通微信公众号
18秒前
liu发布了新的文献求助10
18秒前
18秒前
张若虚完成签到,获得积分10
19秒前
归于晏发布了新的文献求助10
19秒前
木子完成签到,获得积分10
20秒前
licheng完成签到,获得积分10
20秒前
依依完成签到,获得积分10
20秒前
星空物语发布了新的文献求助10
21秒前
科研通AI6应助cookie采纳,获得10
22秒前
22秒前
依依发布了新的文献求助10
23秒前
27秒前
旺仔先生完成签到 ,获得积分10
28秒前
29秒前
30秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379616
求助须知:如何正确求助?哪些是违规求助? 4503889
关于积分的说明 14016933
捐赠科研通 4412719
什么是DOI,文献DOI怎么找? 2423913
邀请新用户注册赠送积分活动 1416795
关于科研通互助平台的介绍 1394372