Big-Data Driven Framework to Estimate Vehicle Volume Based on Mobile Device Location Data

计算机科学 地图匹配 实时计算 体积热力学 地理空间分析 人口 全球定位系统 运输工程 数据挖掘 工程类 地理 电信 物理 人口学 地图学 量子力学 社会学
作者
Mofeng Yang,Weiyu Luo,Mohammad Ashoori,Jina Mahmoudi,Chenfeng Xiong,Jiawei Lu,Guangchen Zhao,Saeed Saleh Namadi,Songhua Hu,Aliakbar Kabiri,Ya Ji
出处
期刊:Transportation Research Record [SAGE]
卷期号:2678 (2): 352-365 被引量:7
标识
DOI:10.1177/03611981231174240
摘要

Vehicle volume serves as a critical metric and the fundamental basis for traffic signal control, transportation project prioritization, road maintenance planning, and more. Traditional methods of quantifying vehicle volume rely on manual counting, video cameras, and loop detectors at a limited number of locations. These efforts require significant labor and cost for expansions. Researchers and private sector companies have also explored alternative solutions, such as probe vehicle data, although this still suffers from a low penetration rate. In recent years, along with the technological advancement in mobile sensors and mobile networks, the quantity of mobile device location data (MDLD) has been growing dramatically in spatiotemporal coverage of the population and its mobility. This paper presents a big-data driven framework that can ingest terabytes of MDLD and estimate vehicle volume over a larger geographical area with a larger sample size. The proposed framework first employs a series of cloud-based computational algorithms to extract multimodal trajectories and trip rosters. A scalable map matching and routing algorithm is then applied to snap and route vehicle trajectories to the roadway network. The observed vehicle counts on each roadway segment are weighted and calibrated against ground truth control totals, that is, annual vehicle-miles traveled and annual average daily traffic. The proposed framework is implemented on the all-street network in the State of Maryland using MDLD for the entire year of 2019. The results demonstrate that our proposed framework produces reliable vehicle volume and also its transferability and generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月魂关注了科研通微信公众号
1秒前
1秒前
mika发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
龅牙苏发布了新的文献求助10
2秒前
3秒前
Improve发布了新的文献求助10
3秒前
3秒前
shdheud完成签到,获得积分10
3秒前
xxxzzz完成签到 ,获得积分10
3秒前
细腻初雪发布了新的文献求助10
4秒前
科研通AI6应助ypj9777采纳,获得10
4秒前
4秒前
津津乐道发布了新的文献求助10
5秒前
听花开的声音完成签到,获得积分10
5秒前
5秒前
angelinazh发布了新的文献求助20
5秒前
汉堡包应助谢建国采纳,获得10
5秒前
加勒比海带完成签到,获得积分10
6秒前
zkl发布了新的文献求助10
6秒前
坦率鱼发布了新的文献求助30
6秒前
8秒前
火山上的鲍师傅完成签到,获得积分10
8秒前
852应助秋水采纳,获得10
8秒前
summer应助大帅采纳,获得10
8秒前
orange发布了新的文献求助10
9秒前
9秒前
傲娇如天发布了新的文献求助10
10秒前
Improve完成签到,获得积分10
10秒前
11秒前
狮子沟核聚变骡子完成签到 ,获得积分10
11秒前
景玉完成签到,获得积分20
11秒前
111舒舒完成签到 ,获得积分10
11秒前
whj完成签到 ,获得积分10
11秒前
An2ni0发布了新的文献求助10
12秒前
12秒前
津津乐道完成签到,获得积分10
13秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338621
求助须知:如何正确求助?哪些是违规求助? 4475739
关于积分的说明 13929215
捐赠科研通 4370994
什么是DOI,文献DOI怎么找? 2401582
邀请新用户注册赠送积分活动 1394626
关于科研通互助平台的介绍 1366445