医学
急性肾损伤
磁共振成像
放射科
肾脏疾病
磁共振弥散成像
肾
病理
内科学
作者
Bin Wang,Yongfang Wang,Jing Wang,Chentao Jin,Rui Zhou,Jinxia Guo,Hong Zhang,Min Wang
摘要
Acute kidney injury (AKI) is a frequent complication of critical illness and carries a significant risk of short‐ and long‐term mortality. The prediction of the progression of AKI to long‐term injury has been difficult for renal disease treatment. Radiologists are keen for the early detection of transition from AKI to long‐term kidney injury, which would help in the preventive measures. The lack of established methods for early detection of long‐term kidney injury underscores the pressing needs of advanced imaging technology that reveals microscopic tissue alterations during the progression of AKI. Fueled by recent advances in data acquisition and post‐processing methods of magnetic resonance imaging (MRI), multiparametric MRI is showing great potential as a diagnostic tool for many kidney diseases. Multiparametric MRI studies offer a precious opportunity for real‐time noninvasive monitoring of pathological development and progression of AKI to long‐term injury. It provides insight into renal vasculature and function (arterial spin labeling, intravoxel incoherent motion), tissue oxygenation (blood oxygen level‐dependent), tissue injury and fibrosis (diffusion tensor imaging, diffusion kurtosis imaging, T1 and T2 mapping, quantitative susceptibility mapping). The multiparametric MRI approach is highly promising but the longitudinal investigation on the transition of AKI to irreversible long‐term impairment is largely ignored. Further optimization and implementation of renal MR methods in clinical practice will enhance our comprehension of not only AKI but chronic kidney diseases. Novel imaging biomarkers for microscopic renal tissue alterations could be discovered and benefit the preventative interventions. This review explores recent MRI applications on acute and long‐term kidney injury while addressing lingering challenges, with emphasis on the potential value of the development of multiparametric MRI for renal imaging on clinical systems. Evidence Level 1 Technical Efficacy Stage 2
科研通智能强力驱动
Strongly Powered by AbleSci AI