电解质
阴极
电化学
锂(药物)
化学
无机化学
化学工程
石墨
电池(电)
材料科学
电极
物理化学
复合材料
功率(物理)
医学
工程类
内分泌学
物理
量子力学
作者
Fangyuan Cheng,Xiaoyu Zhang,Peng Wei,Shixiong Sun,Yue Xu,Qing Li,Chun Fang,Jiantao Han,Yunhui Huang
标识
DOI:10.1016/j.scib.2022.10.007
摘要
The LiNi0.8Co0.1Mn0.1O2 (Ni-rich NCM) cathode materials suffer from electrochemical performance degradation upon cycling due to detrimental cathode interface reactions and irreversible surface phase transition when operating at a high voltage (≥4.5 V). Herein, a traditional carbonate electrolyte with lithium difluoro(oxalato)borate (LiDFOB) and tris(trimethylsilyl)phosphate (TMSP) as dual additives that can preferentially oxidize and decompose to form a stable F, B and Si-rich cathode-electrolyte interphase (CEI) that effectively inhibits continual electrolyte decomposition, transition metal dissolves, surface phase transition and gas generation. In addition, TMSP also removes trace H2O/HF in the electrolyte to increase the electrolyte stability. Owing to the synergistic effect of LiDFOB and TMSP, the Li/LiNi0.8Co0.1Mn0.1O2 half cells exhibit the capacity retention 76.3% after 500 cycles at a super high voltage of 4.7 V, the graphite/LiNi0.8Co0.1Mn0.1O2 full cells exhibit high capacity retention of 82.8% after 500 cycles at 4.5 V, and Li/LiNi0.8Co0.1Mn0.1O2 pouch cells exhibit high capacity retention 94% after 200 cycles at 4.5 V. This work is expected to provide an effective electrolyte optimizing strategy compatible with high energy density lithium-ion battery manufacturing systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI