Machine learning-based prediction of disability risk in geriatric patients with hypertension for different time intervals

逻辑回归 医学 内科学
作者
Chaoyi Xiang,Yafei Wu,Maoni Jia,Ya Fang
出处
期刊:Archives of Gerontology and Geriatrics [Elsevier]
卷期号:105: 104835-104835 被引量:4
标识
DOI:10.1016/j.archger.2022.104835
摘要

The risk of disability in older adults with hypertension is substantially high, and prediction of disability risk is crucial for subsequent management. This study aimed to construct prediction models of disability risk for geriatric patients with hypertension at different time intervals, as well as to assess the important predictors and influencing factors of disability. This study collected data from the Chinese Longitudinal Healthy Longevity and Happy Family Study. There were 1576, 1083 and 506 hypertension patients aged 65+ in 2008 who were free of disability at baseline and had completed outcome information in follow-up of 2008-2012, 2008-2014, 2008-2018. We built five machine learning (ML) models to predict the disability risk. The classic statistical logistic regression (classic-LR) and shapley additive explanations (SHAP) was further introduced to explore possible causal factors and interpret the optimal models' decisions. Among the five ML models, logistic regression, extreme gradient boosting, and deep neural network were the optimal models for detecting 4-, 6-, and 10-year disability risk with their AUC-ROCs reached 0.759, 0.728, 0.694 respectively. The classic-LR revealed potential casual factors for disability and the results of SHAP demonstrated important features for risk prediction, reinforcing the trust of decision makers towards black-box models. The optimal models hold promise for screening out hypertensive old adults at high risk of disability to implement further targeted intervention and the identified key factors may be of additional value in analyzing the causal mechanisms of disability, thereby providing basis to practical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助April采纳,获得10
1秒前
1秒前
2秒前
领导范儿应助chrysophoron采纳,获得10
3秒前
4秒前
5秒前
Singularity应助科研通管家采纳,获得30
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
Singularity应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
Singularity应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
6秒前
科研小陈完成签到,获得积分10
6秒前
烛畔旧盟完成签到,获得积分10
7秒前
lg发布了新的文献求助30
8秒前
8秒前
9秒前
栀盎完成签到 ,获得积分10
10秒前
13秒前
笃定发布了新的文献求助10
13秒前
16秒前
guanxin完成签到 ,获得积分10
18秒前
19秒前
19秒前
April完成签到,获得积分10
19秒前
22秒前
tsgdf发布了新的文献求助10
22秒前
22秒前
April发布了新的文献求助10
24秒前
小鸡学习应助zipperhead采纳,获得10
24秒前
Lii开心完成签到 ,获得积分10
24秒前
24秒前
传奇3应助en采纳,获得10
26秒前
chrysophoron发布了新的文献求助10
26秒前
tsgdf完成签到 ,获得积分20
26秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141210
求助须知:如何正确求助?哪些是违规求助? 2792192
关于积分的说明 7801885
捐赠科研通 2448394
什么是DOI,文献DOI怎么找? 1302521
科研通“疑难数据库(出版商)”最低求助积分说明 626638
版权声明 601237