渗透
膜
材料科学
纳滤
化学工程
陶瓷
薄膜复合膜
界面聚合
聚酰胺
复合数
水溶液
陶瓷膜
复合材料
单体
聚合物
渗透
化学
有机化学
反渗透
生物化学
工程类
作者
Yuehua Zhang,Peng Xu,Xianfu Chen,Minghui Qiu,Yiqun Fan
标识
DOI:10.1016/j.memsci.2022.121076
摘要
Thin-film composite (TFC) nanofiltration (NF) membranes have been widely used in water purification processes. In harsh conditions, however, the application of TFC membrane was limited by selectivity loss because of swelling or dissolution. In this study, a defect-free polyamide (PA) layer was directly prepared on a tubular alumina ceramic membrane with a pore size of 100 nm to compensate these shortcomings. The ceramic support, owing to its superior hydrophilicity, showed excellent affinity with aqueous diamine monomers, preventing defects caused by large pore sizes. Besides, the narrow aperture distribution of support is conductive to control the water-oil interface at an appropriate position that the active layer can form near the support by simple air-drying. Different morphologies and performances were easily obtained by changing the monomer concentration and reaction time. The resulting organic–inorganic composite membrane exhibited pure water permeance of 21.7 LMH/bar and desirable rejection to Na2SO4 of 99.0%. Moreover, the prepared NF membrane showed satisfactory compaction resistance at pressure from 2 to 12 bar owing to the excellent mechanical strength of the support. The inorganic support also endowed the TFC membrane with good performance stability even at 75 °C and after soaking in different organic solvents for one week.
科研通智能强力驱动
Strongly Powered by AbleSci AI