Quantum-based machine learning and AI models to generate force field parameters for drug-like small molecules

部分电荷 力场(虚构) 溶剂化 分子 领域(数学) 密度泛函理论 Atom(片上系统) 统计物理学 化学 隐溶剂化 分子动力学 计算化学 化学物理 物理 计算机科学 量子力学 数学 有机化学 纯数学 嵌入式系统
作者
Sathish Kumar Mudedla,A. Braka,Sangwook Wu
出处
期刊:Frontiers in Molecular Biosciences [Frontiers Media SA]
卷期号:9 被引量:5
标识
DOI:10.3389/fmolb.2022.1002535
摘要

Force fields for drug-like small molecules play an essential role in molecular dynamics simulations and binding free energy calculations. In particular, the accurate generation of partial charges on small molecules is critical to understanding the interactions between proteins and drug-like molecules. However, it is a time-consuming process. Thus, we generated a force field for small molecules and employed a machine learning (ML) model to rapidly predict partial charges on molecules in less than a minute of time. We performed density functional theory (DFT) calculation for 31770 small molecules that covered the chemical space of drug-like molecules. The partial charges for the atoms in a molecule were predicted using an ML model trained on DFT-based atomic charges. The predicted values were comparable to the charges obtained from DFT calculations. The ML model showed high accuracy in the prediction of atomic charges for external test data sets. We also developed neural network (NN) models to assign atom types, phase angles and periodicities. All the models performed with high accuracy on test data sets. Our code calculated all the descriptors that were needed for the prediction of force field parameters and produced topologies for small molecules by combining results from ML and NN models. To assess the accuracy of the predicted force field parameters, we calculated solvation free energies for small molecules, and the results were in close agreement with experimental free energies. The AI-generated force field was effective in the fast and accurate generation of partial charges and other force field parameters for small drug-like molecules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
穆小菜发布了新的文献求助10
刚刚
cherry应助lxl采纳,获得10
刚刚
来活发布了新的文献求助10
刚刚
木子李完成签到,获得积分10
刚刚
小绿草子发布了新的文献求助10
1秒前
1秒前
小二郎应助ggjun采纳,获得10
1秒前
1秒前
122发布了新的文献求助10
2秒前
宋北北完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
汉堡包应助112233采纳,获得10
4秒前
4秒前
6秒前
6秒前
xuanqing发布了新的文献求助10
7秒前
所所应助穆小菜采纳,获得10
7秒前
光亮钢铁侠完成签到,获得积分10
7秒前
7秒前
潇洒映冬发布了新的文献求助10
8秒前
墨秘一完成签到,获得积分10
8秒前
gg发布了新的文献求助10
9秒前
YuenwahHAHA完成签到 ,获得积分10
9秒前
斯文败类应助调皮初蓝采纳,获得10
9秒前
荒谬完成签到,获得积分10
9秒前
随性发布了新的文献求助10
9秒前
10秒前
11秒前
12秒前
happyness完成签到,获得积分10
12秒前
12秒前
荒谬发布了新的文献求助10
13秒前
英俊的铭应助小绿草子采纳,获得10
13秒前
14秒前
14秒前
李一一发布了新的文献求助10
15秒前
15秒前
15秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476549
求助须知:如何正确求助?哪些是违规求助? 3068193
关于积分的说明 9106870
捐赠科研通 2759699
什么是DOI,文献DOI怎么找? 1514226
邀请新用户注册赠送积分活动 700111
科研通“疑难数据库(出版商)”最低求助积分说明 699301