Object localization and edge refinement network for salient object detection

计算机科学 人工智能 GSM演进的增强数据速率 特征(语言学) 模式识别(心理学) 计算机视觉 边缘检测 突出 对象(语法) 变压器 骨干网 图像(数学) 图像处理 电压 物理 哲学 量子力学 语言学 计算机网络
作者
Zhaojian Yao,Luping Wang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:213: 118973-118973 被引量:30
标识
DOI:10.1016/j.eswa.2022.118973
摘要

Most existing methods mainly input images into a CNN backbone to obtain image features. However, compared with convolutional features, the recently emerging transformer features can more accurately express the meaningful features of images. In this paper, we use a transformer backbone to capture multiple feature layers of an image, and design an Object Localization and Edge Refinement (OLER) Network for saliency detection. Our network is divided into two stages, the first stage for object positioning and the second stage for refining their boundaries. In the first stage, we directly apply multiple feature layers to identify salient regions, where we design an Information Multiple Selection (IMS) module to capture saliency cues for each feature layer. The IMS module contains multiple pathways, each of which is a judgment of the location of saliency information. After the input feature layer is processed by the IMS module, its potential salient object information is mined. The second stage consists of two modules, namely the edge generation module and the edge refinement module. The edge generation module takes the original image and saliency map as inputs, and then outputs two edge maps focusing on different edge ranges. To make the object edges sharp, the original image, initial saliency map and two edge maps are fed into the edge refinement module, and the final saliency map is output. Our network as a whole is relatively simple and easy to build without involving complex components. Experimental results on five public datasets demonstrate that our method has tremendous advantages in terms of not only significantly improving detection accuracy, but also achieving better detection efficiency. The code is available at https://github.com/CKYiu/OLER.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张益发发布了新的文献求助10
刚刚
刚刚
马艺帆发布了新的文献求助10
刚刚
1秒前
1秒前
凉风送信完成签到,获得积分10
2秒前
engine完成签到,获得积分10
2秒前
2秒前
4秒前
4秒前
4秒前
酷酷的盼海完成签到,获得积分10
5秒前
zhu发布了新的文献求助10
5秒前
Jasper应助Zhou采纳,获得10
5秒前
Jared应助redamancy采纳,获得10
5秒前
5秒前
辛勤的孤容完成签到,获得积分10
5秒前
动听的靖琪完成签到,获得积分10
5秒前
脑洞疼应助yaoyinlin采纳,获得10
5秒前
6秒前
LIU完成签到,获得积分10
6秒前
Yasmine完成签到 ,获得积分10
6秒前
tiezhu发布了新的文献求助10
8秒前
沉静丹寒发布了新的文献求助10
8秒前
8秒前
ergatoid完成签到,获得积分10
9秒前
求学发布了新的文献求助10
9秒前
迷路豁完成签到 ,获得积分10
9秒前
Egoist完成签到,获得积分0
10秒前
YHX发布了新的文献求助10
10秒前
10秒前
暖阳完成签到 ,获得积分10
11秒前
高小明完成签到,获得积分10
11秒前
领导范儿应助饕餮采纳,获得10
11秒前
七兮完成签到,获得积分10
11秒前
lulu发布了新的文献求助10
11秒前
11秒前
Bminor完成签到,获得积分10
13秒前
纪间完成签到,获得积分10
14秒前
丁丁丁完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568600
求助须知:如何正确求助?哪些是违规求助? 4653216
关于积分的说明 14704706
捐赠科研通 4595016
什么是DOI,文献DOI怎么找? 2521450
邀请新用户注册赠送积分活动 1493035
关于科研通互助平台的介绍 1463793