Object localization and edge refinement network for salient object detection

计算机科学 人工智能 GSM演进的增强数据速率 特征(语言学) 模式识别(心理学) 计算机视觉 边缘检测 突出 对象(语法) 变压器 骨干网 图像(数学) 图像处理 电压 物理 哲学 量子力学 语言学 计算机网络
作者
Zhaojian Yao,Luping Wang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:213: 118973-118973 被引量:30
标识
DOI:10.1016/j.eswa.2022.118973
摘要

Most existing methods mainly input images into a CNN backbone to obtain image features. However, compared with convolutional features, the recently emerging transformer features can more accurately express the meaningful features of images. In this paper, we use a transformer backbone to capture multiple feature layers of an image, and design an Object Localization and Edge Refinement (OLER) Network for saliency detection. Our network is divided into two stages, the first stage for object positioning and the second stage for refining their boundaries. In the first stage, we directly apply multiple feature layers to identify salient regions, where we design an Information Multiple Selection (IMS) module to capture saliency cues for each feature layer. The IMS module contains multiple pathways, each of which is a judgment of the location of saliency information. After the input feature layer is processed by the IMS module, its potential salient object information is mined. The second stage consists of two modules, namely the edge generation module and the edge refinement module. The edge generation module takes the original image and saliency map as inputs, and then outputs two edge maps focusing on different edge ranges. To make the object edges sharp, the original image, initial saliency map and two edge maps are fed into the edge refinement module, and the final saliency map is output. Our network as a whole is relatively simple and easy to build without involving complex components. Experimental results on five public datasets demonstrate that our method has tremendous advantages in terms of not only significantly improving detection accuracy, but also achieving better detection efficiency. The code is available at https://github.com/CKYiu/OLER.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
3秒前
哈哈完成签到 ,获得积分10
3秒前
xxdn发布了新的文献求助10
3秒前
3秒前
欣慰的夏彤给雨村的求助进行了留言
3秒前
LALALA发布了新的文献求助10
3秒前
落寞傲南发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
4秒前
youoii完成签到 ,获得积分10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
4秒前
科目三应助科研通管家采纳,获得10
4秒前
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
5秒前
xin应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得50
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
Lee应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771006
求助须知:如何正确求助?哪些是违规求助? 5588895
关于积分的说明 15426243
捐赠科研通 4904384
什么是DOI,文献DOI怎么找? 2638696
邀请新用户注册赠送积分活动 1586530
关于科研通互助平台的介绍 1541682