Object localization and edge refinement network for salient object detection

计算机科学 人工智能 GSM演进的增强数据速率 特征(语言学) 模式识别(心理学) 计算机视觉 边缘检测 突出 对象(语法) 变压器 骨干网 图像(数学) 图像处理 电压 物理 哲学 量子力学 语言学 计算机网络
作者
Zhaojian Yao,Luping Wang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:213: 118973-118973 被引量:26
标识
DOI:10.1016/j.eswa.2022.118973
摘要

Most existing methods mainly input images into a CNN backbone to obtain image features. However, compared with convolutional features, the recently emerging transformer features can more accurately express the meaningful features of images. In this paper, we use a transformer backbone to capture multiple feature layers of an image, and design an Object Localization and Edge Refinement (OLER) Network for saliency detection. Our network is divided into two stages, the first stage for object positioning and the second stage for refining their boundaries. In the first stage, we directly apply multiple feature layers to identify salient regions, where we design an Information Multiple Selection (IMS) module to capture saliency cues for each feature layer. The IMS module contains multiple pathways, each of which is a judgment of the location of saliency information. After the input feature layer is processed by the IMS module, its potential salient object information is mined. The second stage consists of two modules, namely the edge generation module and the edge refinement module. The edge generation module takes the original image and saliency map as inputs, and then outputs two edge maps focusing on different edge ranges. To make the object edges sharp, the original image, initial saliency map and two edge maps are fed into the edge refinement module, and the final saliency map is output. Our network as a whole is relatively simple and easy to build without involving complex components. Experimental results on five public datasets demonstrate that our method has tremendous advantages in terms of not only significantly improving detection accuracy, but also achieving better detection efficiency. The code is available at https://github.com/CKYiu/OLER.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助长情的月光采纳,获得10
刚刚
1秒前
Smiling完成签到 ,获得积分10
1秒前
jinhui完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
轻雨完成签到 ,获得积分10
3秒前
4秒前
李彤阳完成签到,获得积分10
4秒前
小树发布了新的文献求助10
4秒前
李健应助林林林采纳,获得10
4秒前
up完成签到,获得积分10
4秒前
暖阳发布了新的文献求助20
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
欣慰从云完成签到,获得积分20
6秒前
Yozzi完成签到,获得积分10
7秒前
热心市民蚂蚱殿下完成签到,获得积分10
8秒前
。。完成签到,获得积分20
9秒前
香蕉觅云应助坤坤采纳,获得10
9秒前
炙热的爆米花完成签到,获得积分20
9秒前
Ma完成签到 ,获得积分10
10秒前
10秒前
狄远山完成签到 ,获得积分10
10秒前
章鱼丸子完成签到,获得积分10
10秒前
哭泣的鸵鸟完成签到,获得积分10
10秒前
reny发布了新的文献求助10
11秒前
烂漫春天发布了新的文献求助10
11秒前
11秒前
489完成签到 ,获得积分10
11秒前
柯柯啦啦完成签到,获得积分10
12秒前
scy关注了科研通微信公众号
12秒前
12秒前
皮肤专硕小白一枚完成签到,获得积分10
12秒前
高贵的子默完成签到,获得积分10
12秒前
13秒前
13秒前
搜集达人应助silin采纳,获得10
14秒前
yingrui完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4588123
求助须知:如何正确求助?哪些是违规求助? 4003732
关于积分的说明 12394936
捐赠科研通 3680328
什么是DOI,文献DOI怎么找? 2028598
邀请新用户注册赠送积分活动 1062082
科研通“疑难数据库(出版商)”最低求助积分说明 948086