Flexible needle puncture path planning for liver tumors based on deep reinforcement learning

体素 计算机科学 强化学习 人工智能 烧蚀 路径(计算) 运动规划 肝肿瘤 医学 机器人 内科学 程序设计语言 癌症研究 肝细胞癌
作者
Wenrui Hu,Huiyan Jiang,Meng Wang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (19): 195008-195008 被引量:13
标识
DOI:10.1088/1361-6560/ac8fdd
摘要

Objective.Minimally invasive surgery has been widely adopted in the treatment of patients with liver tumors. In liver tumor puncture surgery, an image-guided ablation needle for puncture surgery, which first reaches a target tumor along a predetermined path, and then ablates the tumor or injects drugs near the tumor, is often used to reduce patient trauma, improving the safety of surgery operations and avoiding possible damage to large blood vessels and key organs. In this paper, a path planning method for computer tomography (CT) guided ablation needle in liver tumor puncture surgery is proposed.Approach.Given a CT volume containing abdominal organs, we first classify voxels and optimize the number of voxels to reduce volume rendering pressure, then we reconstruct a multi-scale 3D model of the liver and hepatic vessels. Secondly, multiple entry points of the surgical path are selected based on the strong and weak constraints of clinical puncture surgery through multi-agent reinforcement learning. We select the optimal needle entry point based on the length measurement. Then, through the incremental training of the double deep Q-learning network (DDQN), the transmission of network parameters from the small-scale environment to the larger-scale environment is accomplished, and the optimal surgical path with more optimized details is obtained.Main results.To avoid falling into local optimum in network training, improve both the convergence speed and performance of the network, and maximize the cumulative reward, we train the path planning network on different scales 3D reconstructed organ models, and validate our method on tumor samples from public datasets. The scores of human surgeons verified the clinical relevance of the proposed method.Significance.Our method can robustly provide the optimal puncture path of flexible needle for liver tumors, which is expected to provide a reference for surgeons' preoperative planning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzsssyyy1995发布了新的文献求助10
刚刚
彭于晏应助cablebot采纳,获得10
刚刚
猪猪猪发布了新的文献求助10
1秒前
paperslicing完成签到,获得积分10
1秒前
wuaaaaa_L发布了新的文献求助10
1秒前
王一博发布了新的文献求助10
1秒前
CCC发布了新的文献求助10
1秒前
电风扇应该塞嘴里完成签到 ,获得积分10
1秒前
骜111完成签到,获得积分10
1秒前
深情安青应助Ian采纳,获得10
2秒前
2秒前
CipherSage应助Nuyoah采纳,获得10
2秒前
务实含灵完成签到,获得积分10
2秒前
3秒前
paperslicing发布了新的文献求助10
4秒前
yy完成签到,获得积分10
4秒前
4秒前
max完成签到,获得积分10
4秒前
kone完成签到,获得积分10
5秒前
ctttt发布了新的文献求助10
6秒前
小孙同学发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
传奇3应助柳柳采纳,获得10
6秒前
友好念真完成签到,获得积分10
7秒前
7秒前
善良的无颜完成签到,获得积分10
8秒前
Ava应助张mingyu123采纳,获得10
8秒前
9秒前
阿橘完成签到,获得积分10
9秒前
Lucas应助Volta_zz采纳,获得10
11秒前
11秒前
时间丶完成签到,获得积分10
12秒前
皮卡丘发布了新的文献求助10
12秒前
irisjlj发布了新的文献求助10
12秒前
13秒前
顺顺安完成签到,获得积分10
13秒前
摩尔曼斯克完成签到,获得积分10
14秒前
虚拟的清炎完成签到 ,获得积分10
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667567
求助须知:如何正确求助?哪些是违规求助? 4886514
关于积分的说明 15120741
捐赠科研通 4826376
什么是DOI,文献DOI怎么找? 2583992
邀请新用户注册赠送积分活动 1538029
关于科研通互助平台的介绍 1496163