Flexible needle puncture path planning for liver tumors based on deep reinforcement learning

体素 计算机科学 强化学习 人工智能 烧蚀 路径(计算) 运动规划 肝肿瘤 医学 机器人 内科学 程序设计语言 癌症研究 肝细胞癌
作者
Wenrui Hu,Huiyan Jiang,Meng Wang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (19): 195008-195008 被引量:13
标识
DOI:10.1088/1361-6560/ac8fdd
摘要

Objective.Minimally invasive surgery has been widely adopted in the treatment of patients with liver tumors. In liver tumor puncture surgery, an image-guided ablation needle for puncture surgery, which first reaches a target tumor along a predetermined path, and then ablates the tumor or injects drugs near the tumor, is often used to reduce patient trauma, improving the safety of surgery operations and avoiding possible damage to large blood vessels and key organs. In this paper, a path planning method for computer tomography (CT) guided ablation needle in liver tumor puncture surgery is proposed.Approach.Given a CT volume containing abdominal organs, we first classify voxels and optimize the number of voxels to reduce volume rendering pressure, then we reconstruct a multi-scale 3D model of the liver and hepatic vessels. Secondly, multiple entry points of the surgical path are selected based on the strong and weak constraints of clinical puncture surgery through multi-agent reinforcement learning. We select the optimal needle entry point based on the length measurement. Then, through the incremental training of the double deep Q-learning network (DDQN), the transmission of network parameters from the small-scale environment to the larger-scale environment is accomplished, and the optimal surgical path with more optimized details is obtained.Main results.To avoid falling into local optimum in network training, improve both the convergence speed and performance of the network, and maximize the cumulative reward, we train the path planning network on different scales 3D reconstructed organ models, and validate our method on tumor samples from public datasets. The scores of human surgeons verified the clinical relevance of the proposed method.Significance.Our method can robustly provide the optimal puncture path of flexible needle for liver tumors, which is expected to provide a reference for surgeons' preoperative planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuancw完成签到 ,获得积分10
刚刚
念姬完成签到 ,获得积分10
1秒前
1秒前
YXHTCM完成签到,获得积分10
1秒前
嘻嘻嘻完成签到,获得积分10
1秒前
丘比特应助DCC采纳,获得10
2秒前
哈哈哈哈完成签到 ,获得积分10
2秒前
Soleil完成签到,获得积分20
4秒前
科研通AI2S应助super chan采纳,获得10
4秒前
甜甜信封完成签到,获得积分10
5秒前
5秒前
ys1111完成签到 ,获得积分10
6秒前
bee完成签到,获得积分10
6秒前
Orange应助e394282438采纳,获得10
7秒前
JamesPei应助XZC采纳,获得10
8秒前
太叔开山发布了新的文献求助10
9秒前
背完单词好睡觉完成签到 ,获得积分10
9秒前
9秒前
11秒前
内向凌波完成签到 ,获得积分10
12秒前
di完成签到,获得积分10
13秒前
爱撒娇的孤丹完成签到 ,获得积分10
14秒前
14秒前
ys1111xiao完成签到 ,获得积分10
14秒前
爆米花应助aha采纳,获得10
15秒前
李妍庆发布了新的文献求助10
16秒前
坚强觅珍完成签到 ,获得积分10
17秒前
super chan发布了新的文献求助10
17秒前
Una完成签到,获得积分10
18秒前
虫虫发布了新的文献求助10
19秒前
阿甘完成签到,获得积分10
20秒前
深情安青应助太叔开山采纳,获得10
26秒前
似雨若离完成签到,获得积分10
29秒前
z7486完成签到,获得积分10
29秒前
满意又蓝完成签到,获得积分10
29秒前
科研通AI6应助小包包采纳,获得10
30秒前
nanfeng完成签到 ,获得积分10
30秒前
GHR完成签到 ,获得积分10
31秒前
aaa发布了新的文献求助10
31秒前
33秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378758
求助须知:如何正确求助?哪些是违规求助? 4503204
关于积分的说明 14015274
捐赠科研通 4411911
什么是DOI,文献DOI怎么找? 2423541
邀请新用户注册赠送积分活动 1416486
关于科研通互助平台的介绍 1393925