已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

One-class model with two decision thresholds for the rapid detection of cashew nuts adulteration by other nuts

掺假者 螺母 统计 数学 化学 检测阈值 色谱法 计算机科学 结构工程 实时计算 工程类
作者
Glòria Rovira,Carolina Sheng Whei Miaw,Mário Lúcio Campos Martins,Marcelo M. Sena,Scheilla Vitorino Carvalho de Souza,M. Pilar Callao,Itziar Ruisánchez
出处
期刊:Talanta [Elsevier BV]
卷期号:253: 123916-123916 被引量:6
标识
DOI:10.1016/j.talanta.2022.123916
摘要

A green screening method to determine cashew nut adulteration with Brazilian nut, pecan nut, macadamia nut and peanut was proposed. The method was based on the development of a one-class soft independent modelling of class analogy (SIMCA) model for non-adulterated cashew nuts using near-infrared (NIR) spectra obtained with portable equipment. Once the model is established, the assignment of unknown samples depends on the threshold established for the authentic class, which is a key aspect in any screening approach. The authors propose innovatively to define two thresholds: lower model distance limit and upper model distance limit. Samples with distances below the lower threshold are assigned as non-adulterated with a 100% probability; samples with distance values greater than the upper threshold are assigned as adulterated with a 100% probability; and samples with distances within these two thresholds will be considered uncertain and should be submitted to a confirmatory analysis. Thus, the possibility of error in the sample assignment significantly decreases. In the present study, when just one threshold was defined, values greater than 95% for the optimized threshold were obtained for both selectivity and specificity. When two class thresholds were defined, the percentage of samples with uncertain assignment changes according to the adulterant considered, highlighting the case of peanuts, in which 0% of uncertain samples was obtained. Considering all adulterants, the number of samples that were submitted to a confirmatory analysis was quite low, 5 of 224 adulterated samples and 3 of 56 non-adulterated samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑神白了完成签到 ,获得积分10
1秒前
鲜艳的采白应助mark707采纳,获得50
1秒前
团宝妞宝完成签到,获得积分10
3秒前
浮浮世世发布了新的文献求助10
4秒前
隐形曼青应助lf-leo采纳,获得10
5秒前
5秒前
我是老大应助joy采纳,获得10
6秒前
Xiao完成签到 ,获得积分10
7秒前
9秒前
Gzl完成签到 ,获得积分10
9秒前
11秒前
mark707完成签到,获得积分10
11秒前
laurina完成签到 ,获得积分10
11秒前
renee_yok完成签到 ,获得积分10
12秒前
12秒前
13秒前
14秒前
xjz发布了新的文献求助10
14秒前
不去明知山完成签到 ,获得积分10
17秒前
sss完成签到,获得积分10
18秒前
lf-leo发布了新的文献求助10
19秒前
菜菜发布了新的文献求助10
22秒前
路过地球发布了新的文献求助10
24秒前
刀锋完成签到,获得积分10
25秒前
何my完成签到 ,获得积分10
28秒前
xjz完成签到,获得积分10
29秒前
30秒前
30秒前
ZXneuro完成签到,获得积分10
31秒前
千层啊完成签到 ,获得积分10
31秒前
千层啊关注了科研通微信公众号
35秒前
xxf发布了新的文献求助10
37秒前
38秒前
chen发布了新的文献求助10
39秒前
小雷完成签到 ,获得积分10
40秒前
玉沐沐完成签到 ,获得积分10
41秒前
苏子岚发布了新的文献求助10
42秒前
菜菜完成签到,获得积分10
45秒前
努力的淼淼完成签到 ,获得积分10
47秒前
47秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5136552
求助须知:如何正确求助?哪些是违规求助? 4336682
关于积分的说明 13510228
捐赠科研通 4174745
什么是DOI,文献DOI怎么找? 2289040
邀请新用户注册赠送积分活动 1289739
关于科研通互助平台的介绍 1231058