One-class model with two decision thresholds for the rapid detection of cashew nuts adulteration by other nuts

掺假者 螺母 统计 数学 化学 检测阈值 色谱法 计算机科学 结构工程 实时计算 工程类
作者
Glòria Rovira,Carolina Sheng Whei Miaw,Mário Lúcio Campos Martins,Marcelo M. Sena,Scheilla Vitorino Carvalho de Souza,M. Pilar Callao,Itziar Ruisánchez
出处
期刊:Talanta [Elsevier]
卷期号:253: 123916-123916 被引量:6
标识
DOI:10.1016/j.talanta.2022.123916
摘要

A green screening method to determine cashew nut adulteration with Brazilian nut, pecan nut, macadamia nut and peanut was proposed. The method was based on the development of a one-class soft independent modelling of class analogy (SIMCA) model for non-adulterated cashew nuts using near-infrared (NIR) spectra obtained with portable equipment. Once the model is established, the assignment of unknown samples depends on the threshold established for the authentic class, which is a key aspect in any screening approach. The authors propose innovatively to define two thresholds: lower model distance limit and upper model distance limit. Samples with distances below the lower threshold are assigned as non-adulterated with a 100% probability; samples with distance values greater than the upper threshold are assigned as adulterated with a 100% probability; and samples with distances within these two thresholds will be considered uncertain and should be submitted to a confirmatory analysis. Thus, the possibility of error in the sample assignment significantly decreases. In the present study, when just one threshold was defined, values greater than 95% for the optimized threshold were obtained for both selectivity and specificity. When two class thresholds were defined, the percentage of samples with uncertain assignment changes according to the adulterant considered, highlighting the case of peanuts, in which 0% of uncertain samples was obtained. Considering all adulterants, the number of samples that were submitted to a confirmatory analysis was quite low, 5 of 224 adulterated samples and 3 of 56 non-adulterated samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qym发布了新的文献求助10
刚刚
1秒前
1秒前
小柠檬发布了新的文献求助10
2秒前
风思雅完成签到,获得积分10
2秒前
文艺雯发布了新的文献求助30
2秒前
阿尔法完成签到,获得积分10
2秒前
纯真电源完成签到,获得积分20
2秒前
lili完成签到 ,获得积分10
3秒前
3秒前
wanci应助小豆芽儿采纳,获得10
4秒前
麻烦~完成签到,获得积分10
4秒前
5秒前
华仔应助gaos采纳,获得10
5秒前
迪迦发布了新的文献求助30
6秒前
糊涂的勒完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
seven完成签到,获得积分10
6秒前
wzxxxx完成签到,获得积分20
6秒前
7秒前
fffzy完成签到,获得积分10
7秒前
MADKAI发布了新的文献求助50
7秒前
lkn完成签到,获得积分10
7秒前
浦肯野举报单薄凌蝶求助涉嫌违规
8秒前
爱撒娇的橘子完成签到,获得积分10
8秒前
8秒前
Owen应助皮蛋瘦肉周采纳,获得10
9秒前
李漂亮完成签到,获得积分10
9秒前
222完成签到 ,获得积分10
9秒前
wzxxxx发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
文艺谷蓝完成签到,获得积分10
11秒前
丰富的复天完成签到,获得积分10
11秒前
干净的寒天完成签到,获得积分10
11秒前
科研通AI5应助WNL采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678