清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Hybrid physics-data-driven online modelling: Framework, methodology and application to electric vehicles

电动汽车 计算机科学 系统工程 工程类 物理 量子力学 功率(物理)
作者
Hao Chen,Shanhe Lou,Chen Lv
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:185: 109791-109791 被引量:9
标识
DOI:10.1016/j.ymssp.2022.109791
摘要

This paper proposes a novel hybrid physics-data-driven framework for system modelling by integrating a physical model and an online learning data model to improve model accuracy, interpretability, and generalization. Taking an in-wheel Motor Driven Vehicle (IMDV) as an example, two hybrid representations, i.e. the Dynamic Linearization Data Model (DLDM) and Recurrent High-Order Neural Network (RHONN) are introduced for the planar dynamics modelling of the electric vehicle. However, it is difficult to obtain the statistical information of the operation process and measurement noise when the weight vectors of the data-driven model is updated online. To address this issue, a H ∞ -based learning algorithm is adopted. The stability and convergence rate are elaborated and compared with an existing Extended Kalman Filter (EKF)-based method. Finally, we compare four methods, including the physics-based, data-based and two hybrid models, to evaluate their performances of modelling the IMDV’s dynamics. The feasibility test and comparison studies are conducted in simulations and on a Hardware-in-the-Loop (HiL) test rig. The results demonstrated that the proposed H ∞ -based hybrid method, which does not make any assumption on measurement noise, has better generalization ability and robustness in practical implementations, compared to other baseline methods. • A novel hybrid physics-data-driven framework for system online modelling is proposed. • The data-driven online modelling can adapt to the fast dynamics of vehicle systems. • H ∞ -based learning shows fast convergency and robustness for parameter identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
EVER完成签到 ,获得积分10
6秒前
小张完成签到,获得积分10
24秒前
fan完成签到,获得积分10
30秒前
49秒前
55秒前
baobeikk完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
无悔完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
亿亿亿亿发布了新的文献求助10
1分钟前
拉长的秋白完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
顾矜应助满天都是大萌德采纳,获得10
2分钟前
xiaosui完成签到 ,获得积分10
2分钟前
学术laji完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
lixuebin完成签到 ,获得积分10
3分钟前
3分钟前
迷你的夜天完成签到 ,获得积分10
3分钟前
lyj完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
Emma应助冷静的小虾米采纳,获得200
3分钟前
4分钟前
Sunny完成签到,获得积分10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
Ava应助精明晓刚采纳,获得10
4分钟前
NattyPoe完成签到,获得积分10
4分钟前
小西完成签到 ,获得积分10
5分钟前
5分钟前
蛋卷完成签到 ,获得积分10
5分钟前
烟花应助雪上一枝蒿采纳,获得10
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960142
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128795
捐赠科研通 3238345
什么是DOI,文献DOI怎么找? 1789709
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069