Hybrid physics-data-driven online modelling: Framework, methodology and application to electric vehicles

电动汽车 计算机科学 系统工程 工程类 物理 量子力学 功率(物理)
作者
Hao Chen,Shanhe Lou,Chen Lv
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:185: 109791-109791 被引量:9
标识
DOI:10.1016/j.ymssp.2022.109791
摘要

This paper proposes a novel hybrid physics-data-driven framework for system modelling by integrating a physical model and an online learning data model to improve model accuracy, interpretability, and generalization. Taking an in-wheel Motor Driven Vehicle (IMDV) as an example, two hybrid representations, i.e. the Dynamic Linearization Data Model (DLDM) and Recurrent High-Order Neural Network (RHONN) are introduced for the planar dynamics modelling of the electric vehicle. However, it is difficult to obtain the statistical information of the operation process and measurement noise when the weight vectors of the data-driven model is updated online. To address this issue, a H ∞ -based learning algorithm is adopted. The stability and convergence rate are elaborated and compared with an existing Extended Kalman Filter (EKF)-based method. Finally, we compare four methods, including the physics-based, data-based and two hybrid models, to evaluate their performances of modelling the IMDV’s dynamics. The feasibility test and comparison studies are conducted in simulations and on a Hardware-in-the-Loop (HiL) test rig. The results demonstrated that the proposed H ∞ -based hybrid method, which does not make any assumption on measurement noise, has better generalization ability and robustness in practical implementations, compared to other baseline methods. • A novel hybrid physics-data-driven framework for system online modelling is proposed. • The data-driven online modelling can adapt to the fast dynamics of vehicle systems. • H ∞ -based learning shows fast convergency and robustness for parameter identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
帅哥发布了新的文献求助10
1秒前
gogogo完成签到 ,获得积分10
1秒前
疯狂的访文完成签到,获得积分20
1秒前
ling发布了新的文献求助10
1秒前
读书的丁丁完成签到,获得积分10
1秒前
SciGPT应助决战学术之巅采纳,获得10
2秒前
YXM1完成签到,获得积分10
2秒前
HHH完成签到,获得积分10
3秒前
den完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
5秒前
彩虹小马发布了新的文献求助10
6秒前
卡卡光波完成签到,获得积分10
6秒前
7秒前
孤独雪柳发布了新的文献求助10
8秒前
醉熏的烤鸡完成签到,获得积分10
8秒前
NexusExplorer应助gxh采纳,获得10
8秒前
闪闪乘风完成签到 ,获得积分10
9秒前
9秒前
Stroeve完成签到,获得积分10
9秒前
踏云发布了新的文献求助10
9秒前
10秒前
YAN发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
Ivory完成签到,获得积分10
10秒前
科研通AI6应助行者无疆采纳,获得10
11秒前
ViVi完成签到,获得积分10
11秒前
LiQi发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
13秒前
无极微光应助禾研采纳,获得20
14秒前
14秒前
淡然完成签到,获得积分10
14秒前
快乐花卷发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618980
求助须知:如何正确求助?哪些是违规求助? 4703923
关于积分的说明 14924415
捐赠科研通 4758994
什么是DOI,文献DOI怎么找? 2550336
邀请新用户注册赠送积分活动 1513125
关于科研通互助平台的介绍 1474401