Hybrid physics-data-driven online modelling: Framework, methodology and application to electric vehicles

电动汽车 计算机科学 系统工程 工程类 物理 量子力学 功率(物理)
作者
Hao Chen,Shanhe Lou,Chen Lv
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:185: 109791-109791 被引量:9
标识
DOI:10.1016/j.ymssp.2022.109791
摘要

This paper proposes a novel hybrid physics-data-driven framework for system modelling by integrating a physical model and an online learning data model to improve model accuracy, interpretability, and generalization. Taking an in-wheel Motor Driven Vehicle (IMDV) as an example, two hybrid representations, i.e. the Dynamic Linearization Data Model (DLDM) and Recurrent High-Order Neural Network (RHONN) are introduced for the planar dynamics modelling of the electric vehicle. However, it is difficult to obtain the statistical information of the operation process and measurement noise when the weight vectors of the data-driven model is updated online. To address this issue, a H ∞ -based learning algorithm is adopted. The stability and convergence rate are elaborated and compared with an existing Extended Kalman Filter (EKF)-based method. Finally, we compare four methods, including the physics-based, data-based and two hybrid models, to evaluate their performances of modelling the IMDV’s dynamics. The feasibility test and comparison studies are conducted in simulations and on a Hardware-in-the-Loop (HiL) test rig. The results demonstrated that the proposed H ∞ -based hybrid method, which does not make any assumption on measurement noise, has better generalization ability and robustness in practical implementations, compared to other baseline methods. • A novel hybrid physics-data-driven framework for system online modelling is proposed. • The data-driven online modelling can adapt to the fast dynamics of vehicle systems. • H ∞ -based learning shows fast convergency and robustness for parameter identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pgg完成签到,获得积分10
刚刚
钰c完成签到,获得积分20
2秒前
邓洁宜完成签到,获得积分10
4秒前
淡定的银耳汤完成签到,获得积分10
4秒前
4秒前
在水一方应助pgg采纳,获得10
6秒前
教育厮完成签到,获得积分10
7秒前
顾羽完成签到,获得积分10
7秒前
黄青青完成签到,获得积分10
8秒前
奇博士发布了新的文献求助10
9秒前
11秒前
yadi完成签到,获得积分10
11秒前
正直的雅绿完成签到,获得积分10
12秒前
所所应助liu采纳,获得10
14秒前
14秒前
15秒前
zhangxf608完成签到,获得积分10
15秒前
16秒前
不想起昵称完成签到,获得积分10
17秒前
yao发布了新的文献求助10
18秒前
18秒前
HAL9000发布了新的文献求助10
18秒前
xiaona完成签到 ,获得积分10
18秒前
陈裕玺发布了新的文献求助10
20秒前
慕青应助奇博士采纳,获得10
20秒前
zwq发布了新的文献求助10
20秒前
UHPC发布了新的文献求助10
21秒前
21秒前
负数完成签到,获得积分10
22秒前
爱学习的马邓邓完成签到 ,获得积分10
24秒前
LHTTT完成签到,获得积分10
25秒前
医学小王完成签到 ,获得积分10
33秒前
狂野元枫完成签到 ,获得积分10
34秒前
趁热拿铁完成签到 ,获得积分10
39秒前
40秒前
善良的半仙完成签到,获得积分10
40秒前
XXXX完成签到,获得积分10
41秒前
43秒前
awrawsaf完成签到 ,获得积分10
43秒前
健忘的晓小完成签到 ,获得积分10
44秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378722
求助须知:如何正确求助?哪些是违规求助? 4503127
关于积分的说明 14015166
捐赠科研通 4411843
什么是DOI,文献DOI怎么找? 2423519
邀请新用户注册赠送积分活动 1416462
关于科研通互助平台的介绍 1393901