Hybrid physics-data-driven online modelling: Framework, methodology and application to electric vehicles

电动汽车 计算机科学 系统工程 工程类 物理 量子力学 功率(物理)
作者
Hao Chen,Shanhe Lou,Chen Lv
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:185: 109791-109791 被引量:9
标识
DOI:10.1016/j.ymssp.2022.109791
摘要

This paper proposes a novel hybrid physics-data-driven framework for system modelling by integrating a physical model and an online learning data model to improve model accuracy, interpretability, and generalization. Taking an in-wheel Motor Driven Vehicle (IMDV) as an example, two hybrid representations, i.e. the Dynamic Linearization Data Model (DLDM) and Recurrent High-Order Neural Network (RHONN) are introduced for the planar dynamics modelling of the electric vehicle. However, it is difficult to obtain the statistical information of the operation process and measurement noise when the weight vectors of the data-driven model is updated online. To address this issue, a H ∞ -based learning algorithm is adopted. The stability and convergence rate are elaborated and compared with an existing Extended Kalman Filter (EKF)-based method. Finally, we compare four methods, including the physics-based, data-based and two hybrid models, to evaluate their performances of modelling the IMDV’s dynamics. The feasibility test and comparison studies are conducted in simulations and on a Hardware-in-the-Loop (HiL) test rig. The results demonstrated that the proposed H ∞ -based hybrid method, which does not make any assumption on measurement noise, has better generalization ability and robustness in practical implementations, compared to other baseline methods. • A novel hybrid physics-data-driven framework for system online modelling is proposed. • The data-driven online modelling can adapt to the fast dynamics of vehicle systems. • H ∞ -based learning shows fast convergency and robustness for parameter identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Akim应助眼睛大的金鱼采纳,获得10
1秒前
1秒前
1秒前
2秒前
legend完成签到,获得积分10
2秒前
猪猪hero发布了新的文献求助10
2秒前
善学以致用应助Scidog采纳,获得10
2秒前
白泽完成签到 ,获得积分10
3秒前
我是老大应助乐乱采纳,获得10
3秒前
张宁波完成签到,获得积分10
3秒前
酷波er应助www采纳,获得10
3秒前
XXF发布了新的文献求助10
4秒前
赤邪发布了新的文献求助10
4秒前
石头发布了新的文献求助10
4秒前
5秒前
Ricky完成签到,获得积分10
5秒前
上官若男应助luuuuuu采纳,获得10
5秒前
杨永亮完成签到,获得积分10
6秒前
6秒前
袁粪到了完成签到 ,获得积分10
6秒前
6秒前
异烟肼完成签到 ,获得积分10
6秒前
Jenny应助通~采纳,获得10
6秒前
yory完成签到 ,获得积分10
7秒前
7秒前
远航完成签到 ,获得积分10
7秒前
7秒前
彭于晏应助Rrr采纳,获得10
7秒前
卓然发布了新的文献求助10
7秒前
精明的中蓝完成签到,获得积分10
8秒前
66应助小钻风采纳,获得10
8秒前
8秒前
领导范儿应助星星采纳,获得10
9秒前
汉堡包应助shotgod采纳,获得10
9秒前
如寄完成签到 ,获得积分10
9秒前
顾闭月发布了新的文献求助10
10秒前
研友_VZG7GZ应助石头采纳,获得10
10秒前
有益发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794