Hybrid physics-data-driven online modelling: Framework, methodology and application to electric vehicles

电动汽车 计算机科学 系统工程 工程类 物理 功率(物理) 量子力学
作者
Hao Chen,Shanhe Lou,Chen Lv
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:185: 109791-109791 被引量:9
标识
DOI:10.1016/j.ymssp.2022.109791
摘要

This paper proposes a novel hybrid physics-data-driven framework for system modelling by integrating a physical model and an online learning data model to improve model accuracy, interpretability, and generalization. Taking an in-wheel Motor Driven Vehicle (IMDV) as an example, two hybrid representations, i.e. the Dynamic Linearization Data Model (DLDM) and Recurrent High-Order Neural Network (RHONN) are introduced for the planar dynamics modelling of the electric vehicle. However, it is difficult to obtain the statistical information of the operation process and measurement noise when the weight vectors of the data-driven model is updated online. To address this issue, a H ∞ -based learning algorithm is adopted. The stability and convergence rate are elaborated and compared with an existing Extended Kalman Filter (EKF)-based method. Finally, we compare four methods, including the physics-based, data-based and two hybrid models, to evaluate their performances of modelling the IMDV’s dynamics. The feasibility test and comparison studies are conducted in simulations and on a Hardware-in-the-Loop (HiL) test rig. The results demonstrated that the proposed H ∞ -based hybrid method, which does not make any assumption on measurement noise, has better generalization ability and robustness in practical implementations, compared to other baseline methods. • A novel hybrid physics-data-driven framework for system online modelling is proposed. • The data-driven online modelling can adapt to the fast dynamics of vehicle systems. • H ∞ -based learning shows fast convergency and robustness for parameter identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
djxdjt发布了新的文献求助10
1秒前
1秒前
淡然的青旋完成签到 ,获得积分10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
Jingkai应助科研通管家采纳,获得10
1秒前
慕青应助调皮的问芙采纳,获得10
2秒前
XZHU应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
hhhhhyyyyyhhhhh完成签到,获得积分10
2秒前
ShawnJohn应助科研通管家采纳,获得10
2秒前
2秒前
smottom应助科研通管家采纳,获得10
2秒前
HOAN应助xtheuv采纳,获得30
2秒前
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
风清扬应助科研通管家采纳,获得30
2秒前
wanci应助科研通管家采纳,获得30
2秒前
田様应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
3秒前
FashionBoy应助阔达的唇膏采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
所所应助高贵火车采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
4秒前
4秒前
李健应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
SMZ应助科研通管家采纳,获得10
4秒前
4秒前
tiptip应助科研通管家采纳,获得10
4秒前
Jingkai应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
smottom应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
5秒前
书翊完成签到,获得积分10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
focus完成签到,获得积分10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710603
求助须知:如何正确求助?哪些是违规求助? 5199800
关于积分的说明 15261321
捐赠科研通 4863194
什么是DOI,文献DOI怎么找? 2610478
邀请新用户注册赠送积分活动 1560802
关于科研通互助平台的介绍 1518423