Jacobians of single-scattering optical properties of super-spheroids computed using neural networks

散射 单次散射反照率 光学 计算 人工神经网络 基质(化学分析) 计算机科学 折射率 计算物理学 物理 算法 材料科学 人工智能 复合材料
作者
Jinhe Yu,Lei Bi,Wei Han,DeYing Wang,Xin Zhang
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:30 (21): 38513-38513 被引量:1
标识
DOI:10.1364/oe.471821
摘要

In atmospheric aerosol remote sensing and data assimilation studies, the Jacobians of the optical properties of non-spherical aerosol particles are required. Specifically, the partial derivatives of the extinction efficiency factor, single-scattering albedo, asymmetry factor, and scattering matrix should be obtained with respect to microphysical parameters, such as complex refractive indices, shape parameters and size parameters. When a look-up table (LUT) of optical properties of particles is available, the Jacobians traditionally can be calculated using the finite difference method (FDM), but the accuracy of the process depends on the resolution of microphysical parameters. In this paper, a deep learning scheme was proposed for computing Jacobians of the optical properties of super-spheroids, which is a flexible model of non-spherical atmospheric particles. Using the neural networks (NN), the error of the Jacobians in the FDM can be reduced by more than 60%, and the error reduction rate of the Jacobians of the scattering matrix elements can be more than 90%. We also tested the efficiency of the NN for computing the Jacobians. The computation takes 30 seconds for one million samples on a host with an NVIDIA GeForce RTX 3070 GPU. The accuracy and efficiency of the present NN scheme proves it is promising for applications in remote sensing and data assimilation studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
啦啦啦完成签到,获得积分20
2秒前
wwqc完成签到,获得积分0
2秒前
2秒前
默存完成签到,获得积分10
3秒前
3秒前
科目三应助活泼的寄风采纳,获得10
3秒前
阳光发布了新的文献求助10
4秒前
lw发布了新的文献求助10
5秒前
欣喜访旋完成签到,获得积分10
6秒前
6秒前
za==应助GGGGGG果果采纳,获得10
6秒前
花生发布了新的文献求助10
6秒前
6秒前
烟花应助外向跳跳糖采纳,获得10
7秒前
7秒前
朵玲完成签到,获得积分10
9秒前
10秒前
10秒前
ppg123应助魔幻安筠采纳,获得10
10秒前
SYLH应助魔幻安筠采纳,获得10
10秒前
11秒前
起名发布了新的文献求助10
11秒前
12秒前
iW发布了新的文献求助10
12秒前
pinging完成签到,获得积分10
13秒前
you完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
贝贝贝完成签到,获得积分10
13秒前
lw完成签到,获得积分20
14秒前
wanci应助优秀的乐曲采纳,获得10
14秒前
沐晴发布了新的文献求助10
14秒前
qiao发布了新的文献求助10
14秒前
小梁今天也要努力呀完成签到 ,获得积分10
14秒前
14秒前
木笔朱瑾完成签到,获得积分10
14秒前
14秒前
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620