Jacobians of single-scattering optical properties of super-spheroids computed using neural networks

散射 单次散射反照率 光学 计算 人工神经网络 基质(化学分析) 计算机科学 折射率 计算物理学 物理 算法 材料科学 人工智能 复合材料
作者
Jinhe Yu,Lei Bi,Wei Han,DeYing Wang,Xin Zhang
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:30 (21): 38513-38513 被引量:1
标识
DOI:10.1364/oe.471821
摘要

In atmospheric aerosol remote sensing and data assimilation studies, the Jacobians of the optical properties of non-spherical aerosol particles are required. Specifically, the partial derivatives of the extinction efficiency factor, single-scattering albedo, asymmetry factor, and scattering matrix should be obtained with respect to microphysical parameters, such as complex refractive indices, shape parameters and size parameters. When a look-up table (LUT) of optical properties of particles is available, the Jacobians traditionally can be calculated using the finite difference method (FDM), but the accuracy of the process depends on the resolution of microphysical parameters. In this paper, a deep learning scheme was proposed for computing Jacobians of the optical properties of super-spheroids, which is a flexible model of non-spherical atmospheric particles. Using the neural networks (NN), the error of the Jacobians in the FDM can be reduced by more than 60%, and the error reduction rate of the Jacobians of the scattering matrix elements can be more than 90%. We also tested the efficiency of the NN for computing the Jacobians. The computation takes 30 seconds for one million samples on a host with an NVIDIA GeForce RTX 3070 GPU. The accuracy and efficiency of the present NN scheme proves it is promising for applications in remote sensing and data assimilation studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助暗月皇采纳,获得10
1秒前
1秒前
LMW完成签到,获得积分10
1秒前
2秒前
dew应助Lee采纳,获得10
2秒前
今后应助LiDaYang采纳,获得10
2秒前
浪者漫心发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
3秒前
4秒前
HXDong123完成签到,获得积分10
4秒前
haha完成签到,获得积分10
4秒前
牛马完成签到,获得积分10
4秒前
爬山虎发布了新的文献求助10
5秒前
5秒前
杨佳莉完成签到,获得积分10
6秒前
朱123完成签到 ,获得积分10
6秒前
敏静完成签到,获得积分10
6秒前
大模型应助陈怀祚采纳,获得10
6秒前
Maston应助xiaoyuyuyu采纳,获得10
6秒前
17完成签到,获得积分20
6秒前
7秒前
7秒前
赘婿应助司连喜采纳,获得10
8秒前
我是老大应助yizh采纳,获得30
8秒前
zhan应助房东的猫采纳,获得10
9秒前
七颗星星完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
无心发布了新的文献求助10
10秒前
10秒前
汉堡包应助淡然寒蕾采纳,获得10
11秒前
尊敬菠萝发布了新的文献求助10
11秒前
星辰大海应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193549
求助须知:如何正确求助?哪些是违规求助? 4376036
关于积分的说明 13627965
捐赠科研通 4230855
什么是DOI,文献DOI怎么找? 2320601
邀请新用户注册赠送积分活动 1318989
关于科研通互助平台的介绍 1269260