选择性
纳米颗粒
法拉第效率
氧化还原
催化作用
化学
工作职能
工作(物理)
碳纤维
化学工程
无机化学
组合化学
材料科学
纳米技术
电化学
物理化学
电极
有机化学
图层(电子)
热力学
复合材料
工程类
复合数
物理
作者
Difei Xiao,Xiaolei Bao,Minghui Zhang,Zaiqi Li,Zeyan Wang,Yugang Gao,Zhaoke Zheng,Peng Wang,Hefeng Cheng,Yuanyuan Liu,Ying Dai,Baibiao Huang
标识
DOI:10.1016/j.cej.2022.139358
摘要
Electrocatalytic CO2 reduction reaction (CO2RR) to multi-carbon products (such as C2H4) provides an attractive approach to realize the closed-loop carbon economy. Although Cu2O has shown high C2H4 selectivity, it suffered from the low stability due to the easily reduced property of Cu+ during CO2RR. Herein, to stabilize Cu+ in Cu2O, Pd-Cu2O was designed and synthesized in this work. Owing to the high work function of Pd, electrons on Cu2O could be spontaneously transferred from Cu2O to Pd, thereby, stabilizing Cu+ in Cu2O by lowering the localized electron density. Furthermore, the presence of Pd can also enhance the stability of the *CO intermediate, which could subsequently enhance the CC coupling to generate C2H4 during CO2RR. The optimized catalyst exhibits high C2H4 Faradaic efficiency of 63.8% at −1.1 V vs. RHE, which is 1.5 times higher than that of pristine Cu2O. Additionally, the stability of Pd-Cu2O can be greatly improved, both the CO2 to C2H4 activity and selectivity can keep almost unchanged for over 35 h. This work provides an efficient strategy for stabilizing Cu+ and *CO intermediates to enhance C2H4 production efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI