多酚类物质
生物
RNA干扰
基因敲除
翼
转录因子
后代
细胞生物学
胰岛素
遗传学
胰岛素受体
内分泌学
核糖核酸
基因
表型可塑性
胰岛素抵抗
工程类
航空航天工程
怀孕
作者
Yiyang Yuan,Yanyan Wang,Wanwan Ye,Erliang Yuan,Jian Di,Xin Chen,Yanling Xing,Yucheng Sun,Feng Ge
标识
DOI:10.1111/1744-7917.13121
摘要
Abstract Wing polyphenism is a common phenomenon that plays key roles in environmental adaptation of insects. Insulin/insulin‐like growth factor signaling (IIS) pathway is a highly conserved pathway in regulation of metabolism, development, and growth in metazoans. It has been reported that IIS is required for switching of wing morph in brown planthopper via regulating the development of the wing pad. However, it remains elusive whether and how IIS pathway regulates transgenerational wing dimorphism in aphid. In this study, we found that pairing and solitary treatments can induce pea aphids to produce high and low percentage winged offspring, respectively. The expression level of ILP5 (insulin‐like peptide 5) in maternal head was significantly higher upon solitary treatment in comparison with pairing, while silencing of ILP5 caused no obvious change in the winged offspring ratio. RNA interference‐mediated knockdown of FoxO (Forkhead transcription factor subgroup O) in stage 20 embryos significantly increased the winged offspring ratio. The results of pharmacological and quantitative polymerase chain reaction experiments showed that the embryonic insulin receptors may not be involved in wing polyphenism. Additionally, ILP4 and ILP11 exhibited higher expression levels in 1st wingless offspring than in winged offspring. We demonstrate that FoxO negatively regulates the wing morph development in embryos. ILPs may regulate aphid wing polyphenism in a developmental stage‐specific manner. However, the regulation may be not mediated by the canonical IIS pathway. The findings advance our understanding of IIS pathway in insect transgenerational wing polyphenism.
科研通智能强力驱动
Strongly Powered by AbleSci AI