放电等离子烧结
材料科学
陶瓷
结构精修
等离子体
热稳定性
上部结构
分析化学(期刊)
复合材料
化学工程
晶体结构
结晶学
热力学
色谱法
化学
物理
量子力学
工程类
作者
Ambreen Nisar,Cheng Zhang,Benjamin Boesl,Arvind Agarwal
标识
DOI:10.1016/j.ceramint.2022.09.050
摘要
Ultra-high temperature ceramics (UHTCs) have shown aspiration to overcome challenges in the thermal protection system (TPS) by designing new materials referred to as multi-component UHTCs (MC-UHTCs) in the compositional space. MC-UHTCs have shown remarkable improvement in oxidation resistance due to the formation of the Hf6Ta2O17 superstructure during plasma exposure. Herein, the Hf6Ta2O17 superstructure is synthesized via a solid-state reaction between HfO2 and Ta2O5 powder mixtures during spark plasma sintering (SPS). The compositions chosen are 50 vol% of HfO2 -50 vol% of Ta2O5 (50HO-50TO) and 70 vol% of HfO2 -30 vol% of Ta2O5 (70HO-30TO). The phase quantification via Rietveld analysis showed Hf6Ta2O17 as a principal phase with some residual Ta2O5 phase in both the samples. The high-temperature thermal stability of the samples was evaluated using high-velocity plasma jet exposure for up to 3 min. 50HO-50TO was able to withstand the intense plasma condition, which is attributed to the higher content of the Hf6Ta2O17 phase (∼84%) and lower strain in the Ta2O5 phase. The augmentation in the Hf6Ta2O17 phase to 94.7% (in 50HO-50TO) post plasma exposure has been attributed to the invariant transformation from a liquid state to Hf6Ta2O17 at temperatures >2500 °C during testing. The mechanical integrity is elucidated from the insignificant change in the hardness ∼13.3 GPa before and 11.2 GPa after plasma exposure of the 50HO-50TO sample. As a result, the Hf6Ta2O17 superstructure's thermo-mechanical stability suggests developing novel oxidation-resistant MC-UHTCs in compositional space for reusable space vehicle applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI