Learning Features of Intra-Consistency and Inter-Diversity: Keys Toward Generalizable Deepfake Detection

计算机科学 过度拟合 人工智能 判别式 机器学习 一般化 杠杆(统计) 一致性(知识库) 任务(项目管理) 模式识别(心理学) 人工神经网络 数学 数学分析 经济 管理
作者
Han Chen,Yuzhen Lin,Bin Li,Shunquan Tan
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (3): 1468-1480 被引量:38
标识
DOI:10.1109/tcsvt.2022.3209336
摘要

Public concerns about deepfake face forgery are continually rising in recent years. Most deepfake detection approaches attempt to learn discriminative features between real and fake faces through end-to-end trained deep neural networks. However, the majorities of them suffer from the problem of poor generalization across different data sources, forgery methods, and/or post-processing operations. In this paper, following the simple but effective principle in discriminative representation learning, i.e., towards learning features of intra-consistency within classes and inter-diversity between classes, we leverage a novel transformer-based self-supervised learning method and an effective data augmentation strategy towards generalizable deepfake detection. Considering the differences between the real and fake images are often subtle and local, the proposed method firstly utilizes Self Prediction Learning (SPL) to learn rich hidden representations by predicting masked patches at a pre-training stage. Intra-class consistency clues in images can be mined without deepfake labels. After pre-training, the discrimination model is then fine-tuned via multi-task learning, including a deepfake classification task and a forgery mask estimation task. It is facilitated by our new data augmentation method called Adjustable Forgery Synthesizer (AFS), which can conveniently simulate the process of synthesizing deepfake images with various levels of visual reality in an explicit manner. AFS greatly prevents overfitting due to insufficient diversity in training data. Comprehensive experiments demonstrate that our method outperforms the state-of-the-art competitors on several popular benchmark datasets in terms of generalization to unseen forgery methods and untrained datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如意安青完成签到,获得积分10
1秒前
hzh发布了新的文献求助10
2秒前
Lumivora关注了科研通微信公众号
2秒前
熊博士发布了新的文献求助20
2秒前
2秒前
3秒前
温柔的梦仙完成签到,获得积分10
3秒前
飘逸山兰完成签到,获得积分10
4秒前
微笑焱彬发布了新的文献求助10
5秒前
5秒前
超帅傲白完成签到,获得积分10
6秒前
6秒前
lezard发布了新的文献求助10
6秒前
早睡发布了新的文献求助20
6秒前
7秒前
janie发布了新的文献求助10
8秒前
8秒前
852发布了新的文献求助10
9秒前
苹果千秋发布了新的文献求助10
9秒前
wanci应助wuxunxun2015采纳,获得10
10秒前
12秒前
12秒前
zcc111发布了新的文献求助10
13秒前
13秒前
猪猪hero发布了新的文献求助10
13秒前
13秒前
14秒前
傻呼呼发布了新的文献求助30
15秒前
15秒前
orixero应助yousheng采纳,获得50
16秒前
Lumivora发布了新的文献求助10
18秒前
细心冬卉发布了新的文献求助10
18秒前
糜厉发布了新的文献求助10
19秒前
科研小菜鸡完成签到 ,获得积分10
20秒前
maox1aoxin应助黄磊采纳,获得30
20秒前
zcc111完成签到,获得积分10
20秒前
胡图图完成签到 ,获得积分10
22秒前
任性的梦菲完成签到,获得积分10
22秒前
乐乐应助linqitc采纳,获得10
22秒前
123完成签到,获得积分10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761395
求助须知:如何正确求助?哪些是违规求助? 3305279
关于积分的说明 10133188
捐赠科研通 3019218
什么是DOI,文献DOI怎么找? 1658046
邀请新用户注册赠送积分活动 791820
科研通“疑难数据库(出版商)”最低求助积分说明 754655