A comparative study of the thermochromic performances of VO2 films obtained by air oxidation of V and VN precursors

热致变色 材料科学 薄膜 拉曼光谱 退火(玻璃) 化学工程 光电子学 分析化学(期刊) 纳米技术 化学 光学 复合材料 有机化学 冶金 工程类 物理
作者
D. Pilloud,A.C. García-Wong,Denis Mangin,Fabien Capon,J.F. Pierson
出处
期刊:Solar Energy Materials and Solar Cells [Elsevier]
卷期号:248: 111947-111947 被引量:3
标识
DOI:10.1016/j.solmat.2022.111947
摘要

Thanks to its metal-to-insulator transition (MIT) temperature not so far from the ambient one, thermochromic VO2 exhibits great potentiality in smart coatings devoted to energy purposes. Among the different methods to synthesize thermochromic VO2 films, reactive magnetron sputtering remains one of the most suitable for cost-effective industrial-scale production. For a few decades, increasing attention has been paid to a fast and relatively simple approach based on two steps to produce thermochromic VO2 thin films: synthesis of a vanadium thin film followed by its oxidation at moderate temperatures. Recently, we have revealed that the oxidation of vanadium nitride (VN) thin films also gives rise to the formation of thermochromic VO2. This work aims to compare the thermochromic properties of VO2 films achieved after thermal air oxidation of V and VN thin films. For both precursors, short-time air annealing was performed at 550 °C. X-ray diffraction and Raman spectroscopy depicted that the thermal oxidation domain allowing the formation of the thermochromic VO2 phase was enlarged for VN compared to V precursor films. These results were confirmed by electrical measurements. Finally, a particular focus was made on the oxides of the VN series in terms of their infrared properties. The results indicate that the oxidation of VN precursor allows the synthesis of VO2 films with high purity displaying good thermochromic performances (IR contrast of 63%, electrical switch of ∼2 decades) with narrower hysteresis widths (<9.3 °C) as compared to those from vanadium films, making VN precursor of particular interest for industrial upscaling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左惋庭完成签到,获得积分10
刚刚
1秒前
TTT完成签到,获得积分10
1秒前
1秒前
红色贝鱼发布了新的文献求助10
2秒前
2秒前
ding应助一一采纳,获得10
3秒前
4秒前
承乐应助左惋庭采纳,获得10
4秒前
李兴起完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
难过思菱发布了新的文献求助30
6秒前
6秒前
敢敢完成签到 ,获得积分10
6秒前
7秒前
8秒前
8秒前
Hello应助小王采纳,获得10
9秒前
9秒前
11秒前
11秒前
领导范儿应助复杂黑夜采纳,获得10
11秒前
yaoli0823完成签到,获得积分10
11秒前
都书涵完成签到,获得积分10
12秒前
hupx完成签到 ,获得积分20
12秒前
木杉完成签到,获得积分10
13秒前
Herb完成签到 ,获得积分10
13秒前
13秒前
clean发布了新的文献求助10
13秒前
科研通AI2S应助彩色的舞蹈采纳,获得10
13秒前
严西完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
14秒前
李慧发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609955
求助须知:如何正确求助?哪些是违规求助? 4694535
关于积分的说明 14882709
捐赠科研通 4720767
什么是DOI,文献DOI怎么找? 2544982
邀请新用户注册赠送积分活动 1509819
关于科研通互助平台的介绍 1473013