化学
亚硫酸盐
二氧化氯
光化学
单线态氧
氯
无机化学
氯化物
有机化学
氧气
作者
Feiyu Lu,Tao Lin,Han Chen
出处
期刊:Water Research
[Elsevier]
日期:2023-11-16
卷期号:248: 120887-120887
被引量:8
标识
DOI:10.1016/j.watres.2023.120887
摘要
Singlet oxygen (1O2)-mediated advanced oxidations have received considerable attention due to their strong capacity to resist the water matrix and high selectivity for organic pollutants. In this study, the activation of chlorine dioxide with sulfite (sulfite/ClO2 process) to effectively produce 1O2 was proposed to degrade fluconazole (FLC) and simultaneously control the formation of disinfection byproducts (DBPs). The results revealed that FLC could be rapidly degraded by 78.6 % within 10 s by the sulfite/ClO2 process. Radical quenching tests and electron paramagnetic resonance (EPR) measurements confirm that 1O2 produced by the cleavage of epoxides formed by the combination of triazole electron-rich groups in FLC with peroxymonosulfate (PMS) was the main active species in the sulfite/ClO2 process. The degradation of FLC was favored under alkaline conditions because of the fast electron transfer rate at higher pH values. The presence of chloride (Cl−), bicarbonate (HCO3−), and humic acid (HA) hindered the degradation of FLC mainly because they compete with PMS for the electron-rich groups produced by the reaction. The degradation intermediates of FLC were identified by UPLC‒MS/MS, and their transformation pathways were deduced by the condensed Fukui function (CFF) theory. Using sulfite/ClO2 as a pretreatment process to treat real potable water, aldehydes, ketones, carboxylic acids and other intermediates may be produced via the carboxylation and carbonylation reactions mediated by 1O2, therefore promoting the formation of DBPs during the following chlorination. This study provided a new perspective that while 1O2 is effectively produced in the sulfite/ClO2 process for contaminant degradation, the formation of DBPs during subsequent chlorination should be cautioned.
科研通智能强力驱动
Strongly Powered by AbleSci AI