A novel strategy segmentation methodology integrating Kraljic portfolio matrix and supplier relationship model: a case study from machinery industry

托普西斯 采购 层次分析法 计算机科学 文件夹 订单(交换) 实现(概率) 过程(计算) 供应商关系管理 相似性(几何) 运筹学 独创性 过程管理 业务 工业工程 营销 人工智能 供应链 数学 工程类 供应链管理 定性研究 图像(数学) 操作系统 社会科学 社会学 统计 财务
作者
Ahmet Selcuk Yalcin,Hüseyin Selçuk Kılıç,Emre Çevikcan
出处
期刊:Benchmarking: An International Journal [Emerald (MCB UP)]
被引量:1
标识
DOI:10.1108/bij-03-2023-0197
摘要

Purpose The purpose of this article is to develop a new model called strategy segmentation methodology (SSM) by combining the Kraljic portfolio matrix (KPM) and the supplier relationship model (SRM) so that the buyer company can effectively conduct its relations with its suppliers. Design/methodology/approach The importance weights of the criteria defining the dimensions of each model are calculated with the single-valued neutrosophic analytical hierarchy process (SVN-AHP) method. Subsequently, the derived importance weights are employed in the single-valued neutrosophic technique for order preference by similarity to ideal solution (SVN-TOPSIS) method to obtain the scores of the suppliers and their supplied items. In order to illustrate the feasibility of the proposed methodology, a case study in the machinery industry is performed with the related comparative analysis. Findings The implementation of SSM enables to formulate various strategies to manage suppliers taking into account the items they procure, their capabilities and performance and the supplier–buyer relationship strength. Based on the proposed strategies, it is concluded that the firm in the case study should terminate its relationship with six of its suppliers. Originality/value Although KPM has become the basis of purchasing strategies for various businesses, it neglects the characteristics of suppliers and the buyer–supplier relationship. In this study, KPM is integrated with the SRM approach presented by Olsen and Ellram (1997) to overcome these disadvantages of KPM. The novel integration of the two approaches enables the realization of a robust and reliable supplier classification model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
澹台灭明发布了新的文献求助10
刚刚
刚刚
bkagyin应助AteeqBaloch采纳,获得10
1秒前
二二二发布了新的文献求助10
1秒前
万能图书馆应助LIU采纳,获得10
1秒前
绿麦盲区发布了新的文献求助10
1秒前
FIGGIEKIO完成签到,获得积分10
1秒前
星星发布了新的文献求助10
1秒前
852应助luoshi采纳,获得10
2秒前
小王发布了新的文献求助10
2秒前
hahah完成签到,获得积分10
2秒前
2秒前
yang完成签到 ,获得积分10
3秒前
lynn_zhang完成签到,获得积分10
3秒前
化学狗发布了新的文献求助10
4秒前
4秒前
浩浩完成签到,获得积分10
5秒前
胡图图完成签到,获得积分10
5秒前
包容的剑发布了新的文献求助10
6秒前
7秒前
小马甲应助细腻沅采纳,获得10
7秒前
8秒前
招财不肥完成签到,获得积分10
8秒前
8秒前
77完成签到,获得积分10
9秒前
NexusExplorer应助顾阿秀采纳,获得10
9秒前
9秒前
科研通AI5应助二二二采纳,获得10
10秒前
terrell完成签到,获得积分10
10秒前
David完成签到,获得积分10
10秒前
10秒前
科研通AI2S应助Denmark采纳,获得10
11秒前
11秒前
望望旺仔牛奶完成签到,获得积分10
11秒前
香蕉觅云应助luoshi采纳,获得10
12秒前
Zn应助gnr2000采纳,获得10
12秒前
二小完成签到,获得积分20
12秒前
拼搏思卉完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762