Efficient Multiview Representation Learning with Correntropy and Anchor Graph

计算机科学 图形 非负矩阵分解 聚类分析 人工智能 代表(政治) 特征学习 矩阵分解 理论计算机科学 模式识别(心理学) 政治学 量子力学 政治 物理 特征向量 法学
作者
Nan Zhang,Xiaoqin Zhang,Shiliang Sun
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-14
标识
DOI:10.1109/tkde.2023.3332682
摘要

Graph-based multiview clustering methods have attracted much attention because of their ability to mine nonlinear structural information among instances. Although they perform well in many scenarios, they consume a lot of computational resources when dealing with large-scale multiview scenarios. To address this issue, we present a new insight into the anchor graph mechanism and propose a novel Nonnegative Anchor Graph Reconstruction (NAGR) model. NAGR introduces the sparse similarity graph into the symmetric matrix factorization and gets the nonnegative representation that retains the graph structural information. Thereafter, we develop a novel Efficient Multiview nonnegative Representation learning framework with Correntropy and Anchor graph (EMR-CA), which integrates multiview anchor graph reconstruction and consensus nonnegative representation learning into a unified framework. EMR-CA uses multiview anchor graph reconstruction to learn consensus nonnegative representation, where correntropy rather than F-norm is used as the approximation measurement criterion. Specifically, normalized anchor graphs of different views are decomposed into a consensus nonnegative representation and multiple view-specific representations, where the consensus representation retains the neighbor graph information between multiview instances and representative anchors on different views. Finally, the effectiveness of the proposed EMR-CA framework is verified by theoretical analysis and experimental results on large-scale realistic multiview scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_8oBxrZ完成签到,获得积分10
1秒前
xunxun完成签到 ,获得积分10
1秒前
lonely完成签到,获得积分10
2秒前
PengyaoSu发布了新的文献求助10
3秒前
3秒前
爆米花应助cindy1226采纳,获得10
3秒前
4秒前
小雒雒完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
7秒前
余姓懒完成签到,获得积分10
7秒前
7秒前
8秒前
chen发布了新的文献求助10
8秒前
lotus0311发布了新的文献求助30
10秒前
华仔应助丰富幻悲采纳,获得10
11秒前
云云然完成签到,获得积分10
11秒前
12秒前
所所应助wh雨采纳,获得10
13秒前
13秒前
13秒前
15秒前
ED应助是龙龙呀采纳,获得10
15秒前
16秒前
16秒前
愉快道之完成签到,获得积分10
16秒前
健壮丝袜发布了新的文献求助10
17秒前
jsinm-thyroid发布了新的文献求助10
17秒前
你怎么这么可爱啊完成签到 ,获得积分10
17秒前
制冷剂发布了新的文献求助10
18秒前
18秒前
优美的念文完成签到,获得积分10
18秒前
山岛风行发布了新的文献求助10
19秒前
19秒前
Kenzonvay发布了新的文献求助10
19秒前
21秒前
chen完成签到,获得积分10
21秒前
羊羊羊发布了新的文献求助10
22秒前
啦啦啦啦发布了新的文献求助10
22秒前
22秒前
WHaha发布了新的文献求助10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951189
求助须知:如何正确求助?哪些是违规求助? 3496538
关于积分的说明 11083082
捐赠科研通 3227010
什么是DOI,文献DOI怎么找? 1784166
邀请新用户注册赠送积分活动 868234
科研通“疑难数据库(出版商)”最低求助积分说明 801089