Efficient Multiview Representation Learning with Correntropy and Anchor Graph

计算机科学 图形 非负矩阵分解 聚类分析 人工智能 代表(政治) 特征学习 矩阵分解 理论计算机科学 模式识别(心理学) 特征向量 物理 量子力学 政治 政治学 法学
作者
Nan Zhang,Xiaoqin Zhang,Shiliang Sun
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tkde.2023.3332682
摘要

Graph-based multiview clustering methods have attracted much attention because of their ability to mine nonlinear structural information among instances. Although they perform well in many scenarios, they consume a lot of computational resources when dealing with large-scale multiview scenarios. To address this issue, we present a new insight into the anchor graph mechanism and propose a novel Nonnegative Anchor Graph Reconstruction (NAGR) model. NAGR introduces the sparse similarity graph into the symmetric matrix factorization and gets the nonnegative representation that retains the graph structural information. Thereafter, we develop a novel Efficient Multiview nonnegative Representation learning framework with Correntropy and Anchor graph (EMR-CA), which integrates multiview anchor graph reconstruction and consensus nonnegative representation learning into a unified framework. EMR-CA uses multiview anchor graph reconstruction to learn consensus nonnegative representation, where correntropy rather than F-norm is used as the approximation measurement criterion. Specifically, normalized anchor graphs of different views are decomposed into a consensus nonnegative representation and multiple view-specific representations, where the consensus representation retains the neighbor graph information between multiview instances and representative anchors on different views. Finally, the effectiveness of the proposed EMR-CA framework is verified by theoretical analysis and experimental results on large-scale realistic multiview scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助小李采纳,获得10
1秒前
1秒前
负数完成签到,获得积分10
1秒前
2秒前
独特的沛凝完成签到,获得积分10
5秒前
无花果应助生动的豪英采纳,获得30
10秒前
一口吃三个月亮完成签到,获得积分10
11秒前
NAOKI应助调皮的蝴蝶采纳,获得10
12秒前
华仔完成签到 ,获得积分10
13秒前
机智的曼易完成签到 ,获得积分10
14秒前
15秒前
阿呆完成签到,获得积分10
15秒前
15秒前
17秒前
jeronimo完成签到,获得积分10
17秒前
aabsd发布了新的文献求助20
19秒前
Niuma发布了新的文献求助10
19秒前
20秒前
lzj001983完成签到,获得积分10
20秒前
佳佳发布了新的文献求助30
22秒前
噜噜晓完成签到 ,获得积分10
25秒前
26秒前
hawaii66完成签到,获得积分10
27秒前
123完成签到,获得积分10
29秒前
积极傥完成签到,获得积分10
30秒前
小秦秦完成签到 ,获得积分10
35秒前
aabsd完成签到,获得积分10
36秒前
37秒前
zhaoxi完成签到 ,获得积分10
38秒前
我爱科研发布了新的文献求助10
39秒前
CodeCraft应助轨迹采纳,获得10
40秒前
ZHOUZHEN完成签到,获得积分10
40秒前
Hello应助稀罕你采纳,获得10
42秒前
WYR发布了新的文献求助10
43秒前
完美世界应助积极傥采纳,获得10
44秒前
所所应助大力的诗蕾采纳,获得10
45秒前
善学以致用应助Ar采纳,获得10
45秒前
成就小懒猪完成签到,获得积分10
45秒前
Owen应助番茄炒蛋采纳,获得10
45秒前
无花果应助jj采纳,获得10
45秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162968
求助须知:如何正确求助?哪些是违规求助? 2813990
关于积分的说明 7902666
捐赠科研通 2473613
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631546
版权声明 602187