Dosiomics and radiomics improve the prediction of post‐radiotherapy neutrophil‐lymphocyte ratio in locally advanced non‐small cell lung cancer

特征选择 放射治疗 特征(语言学) 接收机工作特性 直方图 人工智能 无线电技术 模式识别(心理学) 医学 肺癌 放射治疗计划 剂量体积直方图 计算机科学 核医学 放射科 机器学习 肿瘤科 图像(数学) 哲学 语言学
作者
Runping Hou,Wu-Yan Xia,Chenchen Zhang,Yan Shao,Xueru Zhu,Wen Feng,Qin Zhang,Wen Yu,Xiaolong Fu,Jun Zhao
出处
期刊:Medical Physics [Wiley]
卷期号:51 (1): 650-661 被引量:13
标识
DOI:10.1002/mp.16829
摘要

Abstract Purpose To develop and validate a dosiomics and radiomics model based on three‐dimensional (3D) dose distribution map and computed tomography (CT) images for the prediction of the post‐radiotherapy (post‐RT) neutrophil‐to‐lymphocyte ratio (NLR). Methods This work retrospectively collected 242 locally advanced non‐small cell lung cancer (LA‐NSCLC) patients who were treated with definitive radiotherapy from 2012 to 2016. The NLR collected one month after the completion of RT was defined as the primary outcome. Clinical characteristics and two‐dimensional dosimetric factors calculated from the dose‐volume histogram (DVH) were included. A total of 4165 dosiomics and radiomics features were extracted from the 3D dose maps and CT images within five different anatomical regions of interest (ROIs), respectively. Then, a three‐step feature selection method was proposed to progressively filter features from coarse to fine: (i) model‐based ranking according to individual feature's performance, (ii) maximum relevance and minimum redundancy (mRMR), (iii) select from model based on feature importance calculated with an ensemble of several decision trees. The selected feature subsets were utilized to develop the prediction model with GBDT. All patients were divided into a development set and an independent testing set (2:1). Five‐fold cross‐validation was applied to the development set for both feature selection and model training procedure. Finally, a fusion model combining dosiomics, radiomics and clinical features was constructed to further improve the prediction results. The area under receiver operating characteristic curve (ROC) were used to evaluate the model performance. Results The clinical‐based and DVH‐based models showed limited predictive power with AUCs of 0.632 (95% CI: 0.490‐0.773) and 0.634 (95% CI: 0.497‐0.771), respectively, in the independent testing set. The 9 feature‐based dosiomics and 3 feature‐based radiomics models showed improved AUCs of 0.738 (95% CI: 0.628‐0.849) and 0.689 (95% CI: 0.566‐0.813), respectively. The dosiomics & radiomics & clinical fusion model further improved the model's generalization ability with an AUC of 0.765 (95% CI: 0.656‐0.874). Conclusions Dosiomics and radiomics can benefit the prediction of post‐RT NLR of LA‐NSCLC patients. This can provide a reference for evaluating radiotherapy‐related inflammation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JHY完成签到,获得积分10
2秒前
一个大花瓶完成签到 ,获得积分10
3秒前
柳叶完成签到,获得积分10
3秒前
imchenyin完成签到,获得积分10
4秒前
4秒前
6秒前
6秒前
Hongtao完成签到 ,获得积分10
7秒前
情怀应助朴实的山灵采纳,获得10
7秒前
7秒前
邓凯月完成签到,获得积分10
8秒前
agility完成签到,获得积分10
8秒前
小马甲应助lxy采纳,获得10
8秒前
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
核桃发布了新的文献求助10
11秒前
Quhang完成签到,获得积分10
13秒前
lxy完成签到,获得积分20
14秒前
14秒前
清风发布了新的文献求助10
15秒前
MCY发布了新的文献求助10
15秒前
屁颠小豪完成签到,获得积分10
16秒前
16秒前
17秒前
SciGPT应助静宝采纳,获得10
18秒前
人走茶凉发布了新的文献求助10
19秒前
爆米花应助jtyt采纳,获得10
20秒前
在水一方应助111采纳,获得10
21秒前
22秒前
桐桐应助一只可爱壳采纳,获得10
22秒前
旦丁洋完成签到,获得积分10
23秒前
呆萌的秋天完成签到,获得积分10
23秒前
25秒前
无极微光应助旦丁洋采纳,获得20
26秒前
小安完成签到,获得积分10
26秒前
lxy发布了新的文献求助10
29秒前
伤心猪大肠完成签到,获得积分10
29秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742484
求助须知:如何正确求助?哪些是违规求助? 5408853
关于积分的说明 15345143
捐赠科研通 4883750
什么是DOI,文献DOI怎么找? 2625301
邀请新用户注册赠送积分活动 1574150
关于科研通互助平台的介绍 1531084