Dosiomics and radiomics improve the prediction of post‐radiotherapy neutrophil‐lymphocyte ratio in locally advanced non‐small cell lung cancer

特征选择 放射治疗 特征(语言学) 接收机工作特性 直方图 人工智能 无线电技术 模式识别(心理学) 医学 肺癌 放射治疗计划 剂量体积直方图 计算机科学 核医学 放射科 机器学习 肿瘤科 图像(数学) 哲学 语言学
作者
Runping Hou,Wu-Yan Xia,Chenchen Zhang,Yan Shao,Xueru Zhu,Wen Feng,Qin Zhang,Wen Yu,Xiaolong Fu,Jun Zhao
出处
期刊:Medical Physics [Wiley]
卷期号:51 (1): 650-661 被引量:10
标识
DOI:10.1002/mp.16829
摘要

Abstract Purpose To develop and validate a dosiomics and radiomics model based on three‐dimensional (3D) dose distribution map and computed tomography (CT) images for the prediction of the post‐radiotherapy (post‐RT) neutrophil‐to‐lymphocyte ratio (NLR). Methods This work retrospectively collected 242 locally advanced non‐small cell lung cancer (LA‐NSCLC) patients who were treated with definitive radiotherapy from 2012 to 2016. The NLR collected one month after the completion of RT was defined as the primary outcome. Clinical characteristics and two‐dimensional dosimetric factors calculated from the dose‐volume histogram (DVH) were included. A total of 4165 dosiomics and radiomics features were extracted from the 3D dose maps and CT images within five different anatomical regions of interest (ROIs), respectively. Then, a three‐step feature selection method was proposed to progressively filter features from coarse to fine: (i) model‐based ranking according to individual feature's performance, (ii) maximum relevance and minimum redundancy (mRMR), (iii) select from model based on feature importance calculated with an ensemble of several decision trees. The selected feature subsets were utilized to develop the prediction model with GBDT. All patients were divided into a development set and an independent testing set (2:1). Five‐fold cross‐validation was applied to the development set for both feature selection and model training procedure. Finally, a fusion model combining dosiomics, radiomics and clinical features was constructed to further improve the prediction results. The area under receiver operating characteristic curve (ROC) were used to evaluate the model performance. Results The clinical‐based and DVH‐based models showed limited predictive power with AUCs of 0.632 (95% CI: 0.490‐0.773) and 0.634 (95% CI: 0.497‐0.771), respectively, in the independent testing set. The 9 feature‐based dosiomics and 3 feature‐based radiomics models showed improved AUCs of 0.738 (95% CI: 0.628‐0.849) and 0.689 (95% CI: 0.566‐0.813), respectively. The dosiomics & radiomics & clinical fusion model further improved the model's generalization ability with an AUC of 0.765 (95% CI: 0.656‐0.874). Conclusions Dosiomics and radiomics can benefit the prediction of post‐RT NLR of LA‐NSCLC patients. This can provide a reference for evaluating radiotherapy‐related inflammation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
司佳雨完成签到,获得积分10
1秒前
SciGPT应助孤独傲松采纳,获得10
1秒前
2秒前
11发布了新的文献求助10
2秒前
fbwg发布了新的文献求助10
2秒前
2秒前
负责蜜蜂发布了新的文献求助10
2秒前
llq1993发布了新的文献求助10
3秒前
4秒前
平平发布了新的文献求助10
6秒前
周阳完成签到,获得积分10
6秒前
李健应助屿2采纳,获得10
7秒前
霸霸发布了新的文献求助10
7秒前
lalala应助晨妍采纳,获得10
7秒前
正直毛豆发布了新的文献求助10
7秒前
jj完成签到,获得积分10
8秒前
Dan发布了新的文献求助10
8秒前
小布丁完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
CodeCraft应助小陈采纳,获得10
9秒前
9秒前
砼砼完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
ldh完成签到,获得积分10
12秒前
13秒前
大模型应助霸霸采纳,获得10
14秒前
Lucas应助1111111采纳,获得10
15秒前
孤独傲松发布了新的文献求助10
16秒前
爱吃米线发布了新的文献求助10
17秒前
小白发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
淡淡萍完成签到,获得积分10
18秒前
19秒前
jackeylee99999完成签到,获得积分20
19秒前
Live应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666560
求助须知:如何正确求助?哪些是违规求助? 4882496
关于积分的说明 15117625
捐赠科研通 4825585
什么是DOI,文献DOI怎么找? 2583523
邀请新用户注册赠送积分活动 1537653
关于科研通互助平台的介绍 1495895