Dosiomics and radiomics improve the prediction of post‐radiotherapy neutrophil‐lymphocyte ratio in locally advanced non‐small cell lung cancer

特征选择 放射治疗 特征(语言学) 接收机工作特性 直方图 人工智能 无线电技术 模式识别(心理学) 医学 肺癌 放射治疗计划 剂量体积直方图 计算机科学 核医学 放射科 机器学习 肿瘤科 图像(数学) 语言学 哲学
作者
Runping Hou,Wu-Yan Xia,Chenchen Zhang,Yan Shao,Xueru Zhu,Wen Feng,Qin Zhang,Wen Yu,Xiaolong Fu,Jun Zhao
出处
期刊:Medical Physics [Wiley]
卷期号:51 (1): 650-661 被引量:7
标识
DOI:10.1002/mp.16829
摘要

Abstract Purpose To develop and validate a dosiomics and radiomics model based on three‐dimensional (3D) dose distribution map and computed tomography (CT) images for the prediction of the post‐radiotherapy (post‐RT) neutrophil‐to‐lymphocyte ratio (NLR). Methods This work retrospectively collected 242 locally advanced non‐small cell lung cancer (LA‐NSCLC) patients who were treated with definitive radiotherapy from 2012 to 2016. The NLR collected one month after the completion of RT was defined as the primary outcome. Clinical characteristics and two‐dimensional dosimetric factors calculated from the dose‐volume histogram (DVH) were included. A total of 4165 dosiomics and radiomics features were extracted from the 3D dose maps and CT images within five different anatomical regions of interest (ROIs), respectively. Then, a three‐step feature selection method was proposed to progressively filter features from coarse to fine: (i) model‐based ranking according to individual feature's performance, (ii) maximum relevance and minimum redundancy (mRMR), (iii) select from model based on feature importance calculated with an ensemble of several decision trees. The selected feature subsets were utilized to develop the prediction model with GBDT. All patients were divided into a development set and an independent testing set (2:1). Five‐fold cross‐validation was applied to the development set for both feature selection and model training procedure. Finally, a fusion model combining dosiomics, radiomics and clinical features was constructed to further improve the prediction results. The area under receiver operating characteristic curve (ROC) were used to evaluate the model performance. Results The clinical‐based and DVH‐based models showed limited predictive power with AUCs of 0.632 (95% CI: 0.490‐0.773) and 0.634 (95% CI: 0.497‐0.771), respectively, in the independent testing set. The 9 feature‐based dosiomics and 3 feature‐based radiomics models showed improved AUCs of 0.738 (95% CI: 0.628‐0.849) and 0.689 (95% CI: 0.566‐0.813), respectively. The dosiomics & radiomics & clinical fusion model further improved the model's generalization ability with an AUC of 0.765 (95% CI: 0.656‐0.874). Conclusions Dosiomics and radiomics can benefit the prediction of post‐RT NLR of LA‐NSCLC patients. This can provide a reference for evaluating radiotherapy‐related inflammation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟里戏完成签到 ,获得积分10
1秒前
英姑应助七七丫采纳,获得30
2秒前
马可波波完成签到,获得积分10
2秒前
chizhi完成签到,获得积分10
2秒前
2秒前
yls完成签到,获得积分20
4秒前
典雅碧空应助大恩区采纳,获得20
4秒前
lfydhk完成签到 ,获得积分10
4秒前
5秒前
MQ完成签到,获得积分10
8秒前
8秒前
cmuzf完成签到,获得积分10
11秒前
man完成签到 ,获得积分10
11秒前
菲菲完成签到 ,获得积分10
11秒前
twob发布了新的文献求助10
12秒前
JIE发布了新的文献求助10
13秒前
14秒前
李珂完成签到,获得积分10
14秒前
15秒前
tjunqi完成签到,获得积分10
16秒前
坚强谷槐完成签到,获得积分10
17秒前
zhenzhen完成签到,获得积分10
17秒前
香蕉觅云应助ri_290采纳,获得10
18秒前
年轻代灵完成签到 ,获得积分10
19秒前
19秒前
英姑应助开心苠采纳,获得10
20秒前
十七完成签到 ,获得积分10
20秒前
默默白开水完成签到 ,获得积分10
21秒前
JamesPei应助秋秋采纳,获得10
22秒前
23秒前
希望天下0贩的0应助尔沁采纳,获得10
24秒前
26秒前
狂野芷蕾发布了新的文献求助10
26秒前
1eader1完成签到,获得积分10
26秒前
27秒前
book卟完成签到 ,获得积分10
27秒前
荔枝完成签到,获得积分10
30秒前
林先生完成签到,获得积分10
30秒前
负责紊完成签到,获得积分10
30秒前
早点睡发布了新的文献求助10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965864
求助须知:如何正确求助?哪些是违规求助? 3511176
关于积分的说明 11156785
捐赠科研通 3245809
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278