Dosiomics and radiomics improve the prediction of post‐radiotherapy neutrophil‐lymphocyte ratio in locally advanced non‐small cell lung cancer

特征选择 放射治疗 特征(语言学) 接收机工作特性 直方图 人工智能 无线电技术 模式识别(心理学) 医学 肺癌 放射治疗计划 剂量体积直方图 计算机科学 核医学 放射科 机器学习 肿瘤科 图像(数学) 语言学 哲学
作者
Runping Hou,Wu-Yan Xia,Chenchen Zhang,Yan Shao,Xueru Zhu,Wen Feng,Qin Zhang,Wen Yu,Xiaolong Fu,Jun Zhao
出处
期刊:Medical Physics [Wiley]
卷期号:51 (1): 650-661 被引量:10
标识
DOI:10.1002/mp.16829
摘要

Abstract Purpose To develop and validate a dosiomics and radiomics model based on three‐dimensional (3D) dose distribution map and computed tomography (CT) images for the prediction of the post‐radiotherapy (post‐RT) neutrophil‐to‐lymphocyte ratio (NLR). Methods This work retrospectively collected 242 locally advanced non‐small cell lung cancer (LA‐NSCLC) patients who were treated with definitive radiotherapy from 2012 to 2016. The NLR collected one month after the completion of RT was defined as the primary outcome. Clinical characteristics and two‐dimensional dosimetric factors calculated from the dose‐volume histogram (DVH) were included. A total of 4165 dosiomics and radiomics features were extracted from the 3D dose maps and CT images within five different anatomical regions of interest (ROIs), respectively. Then, a three‐step feature selection method was proposed to progressively filter features from coarse to fine: (i) model‐based ranking according to individual feature's performance, (ii) maximum relevance and minimum redundancy (mRMR), (iii) select from model based on feature importance calculated with an ensemble of several decision trees. The selected feature subsets were utilized to develop the prediction model with GBDT. All patients were divided into a development set and an independent testing set (2:1). Five‐fold cross‐validation was applied to the development set for both feature selection and model training procedure. Finally, a fusion model combining dosiomics, radiomics and clinical features was constructed to further improve the prediction results. The area under receiver operating characteristic curve (ROC) were used to evaluate the model performance. Results The clinical‐based and DVH‐based models showed limited predictive power with AUCs of 0.632 (95% CI: 0.490‐0.773) and 0.634 (95% CI: 0.497‐0.771), respectively, in the independent testing set. The 9 feature‐based dosiomics and 3 feature‐based radiomics models showed improved AUCs of 0.738 (95% CI: 0.628‐0.849) and 0.689 (95% CI: 0.566‐0.813), respectively. The dosiomics & radiomics & clinical fusion model further improved the model's generalization ability with an AUC of 0.765 (95% CI: 0.656‐0.874). Conclusions Dosiomics and radiomics can benefit the prediction of post‐RT NLR of LA‐NSCLC patients. This can provide a reference for evaluating radiotherapy‐related inflammation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
channy完成签到,获得积分10
刚刚
科研通AI6应助芝士奶盖采纳,获得10
刚刚
cc完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
端庄荔枝发布了新的文献求助10
3秒前
3秒前
陈惠卿88完成签到,获得积分10
3秒前
3秒前
4秒前
忧郁道之发布了新的文献求助10
4秒前
冀1完成签到,获得积分10
4秒前
4秒前
5秒前
zxc发布了新的文献求助10
5秒前
5秒前
Deb发布了新的文献求助10
5秒前
方法法国衣服头发完成签到,获得积分10
6秒前
6秒前
学习中的呜哩哇啦完成签到,获得积分10
6秒前
6秒前
1234发布了新的文献求助10
6秒前
7秒前
7秒前
F冯发布了新的文献求助10
8秒前
KeYang发布了新的文献求助10
8秒前
WenTang发布了新的文献求助10
8秒前
我不李姐发布了新的文献求助30
8秒前
科目三应助HH采纳,获得10
8秒前
聪慧丹寒发布了新的文献求助10
8秒前
gaochanglu发布了新的文献求助10
9秒前
EpQAQ完成签到,获得积分10
9秒前
淡淡的方盒完成签到,获得积分10
9秒前
毕长富完成签到,获得积分10
9秒前
Jared应助doby飞飞采纳,获得10
9秒前
9秒前
10秒前
lululala发布了新的文献求助10
10秒前
Wind应助小树一一采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271