Dosiomics and radiomics improve the prediction of post‐radiotherapy neutrophil‐lymphocyte ratio in locally advanced non‐small cell lung cancer

特征选择 放射治疗 特征(语言学) 接收机工作特性 直方图 人工智能 无线电技术 模式识别(心理学) 医学 肺癌 放射治疗计划 剂量体积直方图 计算机科学 核医学 放射科 机器学习 肿瘤科 图像(数学) 语言学 哲学
作者
Runping Hou,Wu-Yan Xia,Chenchen Zhang,Yan Shao,Xueru Zhu,Wen Feng,Qin Zhang,Wen Yu,Xiaolong Fu,Jun Zhao
出处
期刊:Medical Physics [Wiley]
卷期号:51 (1): 650-661 被引量:10
标识
DOI:10.1002/mp.16829
摘要

Abstract Purpose To develop and validate a dosiomics and radiomics model based on three‐dimensional (3D) dose distribution map and computed tomography (CT) images for the prediction of the post‐radiotherapy (post‐RT) neutrophil‐to‐lymphocyte ratio (NLR). Methods This work retrospectively collected 242 locally advanced non‐small cell lung cancer (LA‐NSCLC) patients who were treated with definitive radiotherapy from 2012 to 2016. The NLR collected one month after the completion of RT was defined as the primary outcome. Clinical characteristics and two‐dimensional dosimetric factors calculated from the dose‐volume histogram (DVH) were included. A total of 4165 dosiomics and radiomics features were extracted from the 3D dose maps and CT images within five different anatomical regions of interest (ROIs), respectively. Then, a three‐step feature selection method was proposed to progressively filter features from coarse to fine: (i) model‐based ranking according to individual feature's performance, (ii) maximum relevance and minimum redundancy (mRMR), (iii) select from model based on feature importance calculated with an ensemble of several decision trees. The selected feature subsets were utilized to develop the prediction model with GBDT. All patients were divided into a development set and an independent testing set (2:1). Five‐fold cross‐validation was applied to the development set for both feature selection and model training procedure. Finally, a fusion model combining dosiomics, radiomics and clinical features was constructed to further improve the prediction results. The area under receiver operating characteristic curve (ROC) were used to evaluate the model performance. Results The clinical‐based and DVH‐based models showed limited predictive power with AUCs of 0.632 (95% CI: 0.490‐0.773) and 0.634 (95% CI: 0.497‐0.771), respectively, in the independent testing set. The 9 feature‐based dosiomics and 3 feature‐based radiomics models showed improved AUCs of 0.738 (95% CI: 0.628‐0.849) and 0.689 (95% CI: 0.566‐0.813), respectively. The dosiomics & radiomics & clinical fusion model further improved the model's generalization ability with an AUC of 0.765 (95% CI: 0.656‐0.874). Conclusions Dosiomics and radiomics can benefit the prediction of post‐RT NLR of LA‐NSCLC patients. This can provide a reference for evaluating radiotherapy‐related inflammation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
记忆力超人完成签到,获得积分10
刚刚
谢大喵发布了新的文献求助10
刚刚
BYN发布了新的文献求助10
1秒前
1秒前
Norajjj发布了新的文献求助10
1秒前
胖虎完成签到,获得积分10
1秒前
1秒前
乐观三问完成签到,获得积分10
2秒前
别来沾边发布了新的文献求助10
2秒前
hanli发布了新的文献求助10
2秒前
4秒前
4秒前
5秒前
电脑桌完成签到,获得积分10
5秒前
发嗲的雨筠完成签到,获得积分0
6秒前
snnn完成签到,获得积分10
6秒前
清澜庭完成签到,获得积分10
6秒前
七田皿完成签到,获得积分20
6秒前
lzy应助长鼻子匹诺曹采纳,获得10
6秒前
英姑应助喜悦的唇膏采纳,获得10
6秒前
7秒前
7秒前
不想上学完成签到,获得积分10
7秒前
众行绘研应助LZT采纳,获得10
7秒前
优娜完成签到 ,获得积分10
8秒前
拥挤而独行完成签到,获得积分10
8秒前
林家小弟完成签到 ,获得积分10
8秒前
nianshu完成签到 ,获得积分0
8秒前
唔西迪西发布了新的文献求助10
9秒前
9秒前
ooo完成签到 ,获得积分10
9秒前
彭于晏应助阿怪采纳,获得10
9秒前
Atan完成签到,获得积分10
9秒前
huangchengzi发布了新的文献求助10
10秒前
Q52完成签到 ,获得积分10
10秒前
2233完成签到,获得积分10
10秒前
称心的冥王星完成签到,获得积分10
10秒前
wl123完成签到,获得积分10
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646180
求助须知:如何正确求助?哪些是违规求助? 4770425
关于积分的说明 15033724
捐赠科研通 4804901
什么是DOI,文献DOI怎么找? 2569318
邀请新用户注册赠送积分活动 1526307
关于科研通互助平台的介绍 1485803