Cooperation of multi-task segmentation and a graph convolutional network for object vector boundary extraction in remote-sensing imagery

计算机科学 人工智能 分割 图形 卷积神经网络 任务(项目管理) 模式识别(心理学) 支持向量机 边界(拓扑) 钥匙(锁) 数据挖掘 理论计算机科学 数学 计算机安全 数学分析 经济 管理
作者
A. P. Wang,Penglin Zhang
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:44 (16): 4911-4936
标识
DOI:10.1080/01431161.2023.2240518
摘要

ABSTRACTIdentifying and vectorizing the object in the image is an important part of producing high-precision vector maps. Deep learning can automatically extract vector boundaries accurately, but it still does not satisfy the application requirements for boundaries. Clearer boundaries and more concise vector points are also important components that cannot be neglected in vectorization. Taking buildings as the research object, we introduce a cooperative neural network of multi-task segmentation and graph convolution to improve the extraction of buildings by strengthening the boundaries and strategically selecting key points. We design a multi-task neural network to extract and optimize the vector boundaries, whose key points can be selected and refined with a graph convolutional network. In addition, to improve the coherence between features and jointly multi-information, we design a mutual-supervision loss for our method. Our experimental results show that our method effectively extracted buildings and outperformed several equal methods on the different public datasets.KEYWORDS: Vector boundary extractionconvolutional neural network (CNN)graph convolutional network (GCN)vector optimization AcknowledgementsThis research was jointly funded by the National Key R&D Program of China, 2022YFC3006305. And it is also supported by the Key Laboratory of National Geographic Census and Monitoring, Ministry of Natural Resources, 2022NGCM11Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported by the National Key R&D Program of China [2022YFC3006305]; Key Laboratory of National Geographic Census and Monitoring, Ministry of Natural Resources [2022NGCM11].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清酒少年游完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
3秒前
在路上完成签到,获得积分10
3秒前
善学以致用应助一匹黑狼采纳,获得10
4秒前
kkk完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
ruochenzu发布了新的文献求助10
5秒前
丰富的宛亦完成签到 ,获得积分10
6秒前
yzm发布了新的文献求助10
6秒前
开放的大侠完成签到,获得积分10
6秒前
wushengdeyu发布了新的文献求助10
7秒前
子乔完成签到,获得积分10
7秒前
姚美丽完成签到 ,获得积分10
7秒前
搜集达人应助黛黛超棒嘟采纳,获得10
7秒前
背后玉米发布了新的文献求助10
7秒前
8秒前
jing完成签到,获得积分10
8秒前
郑开司09完成签到,获得积分10
8秒前
情怀应助Li采纳,获得10
9秒前
李爱国应助知性的千秋采纳,获得10
9秒前
微笑的冬天完成签到,获得积分10
9秒前
10秒前
11秒前
wztin发布了新的文献求助10
12秒前
隐形曼青应助yujie采纳,获得10
12秒前
koh完成签到,获得积分10
13秒前
guoweisleep发布了新的文献求助10
13秒前
zqxu完成签到,获得积分10
13秒前
科目三应助花花呀采纳,获得10
13秒前
Fiona000001完成签到,获得积分10
13秒前
研友_LOK59L完成签到,获得积分10
14秒前
14秒前
天天快乐应助乔乐采纳,获得10
14秒前
无花果应助ruochenzu采纳,获得30
14秒前
浅辰完成签到 ,获得积分10
15秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147695
求助须知:如何正确求助?哪些是违规求助? 2798784
关于积分的说明 7831337
捐赠科研通 2455622
什么是DOI,文献DOI怎么找? 1306889
科研通“疑难数据库(出版商)”最低求助积分说明 627943
版权声明 601587