Cooperation of multi-task segmentation and a graph convolutional network for object vector boundary extraction in remote-sensing imagery

计算机科学 人工智能 分割 图形 卷积神经网络 任务(项目管理) 模式识别(心理学) 支持向量机 边界(拓扑) 钥匙(锁) 数据挖掘 理论计算机科学 数学 数学分析 管理 计算机安全 经济
作者
A. P. Wang,Penglin Zhang
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:44 (16): 4911-4936
标识
DOI:10.1080/01431161.2023.2240518
摘要

ABSTRACTIdentifying and vectorizing the object in the image is an important part of producing high-precision vector maps. Deep learning can automatically extract vector boundaries accurately, but it still does not satisfy the application requirements for boundaries. Clearer boundaries and more concise vector points are also important components that cannot be neglected in vectorization. Taking buildings as the research object, we introduce a cooperative neural network of multi-task segmentation and graph convolution to improve the extraction of buildings by strengthening the boundaries and strategically selecting key points. We design a multi-task neural network to extract and optimize the vector boundaries, whose key points can be selected and refined with a graph convolutional network. In addition, to improve the coherence between features and jointly multi-information, we design a mutual-supervision loss for our method. Our experimental results show that our method effectively extracted buildings and outperformed several equal methods on the different public datasets.KEYWORDS: Vector boundary extractionconvolutional neural network (CNN)graph convolutional network (GCN)vector optimization AcknowledgementsThis research was jointly funded by the National Key R&D Program of China, 2022YFC3006305. And it is also supported by the Key Laboratory of National Geographic Census and Monitoring, Ministry of Natural Resources, 2022NGCM11Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported by the National Key R&D Program of China [2022YFC3006305]; Key Laboratory of National Geographic Census and Monitoring, Ministry of Natural Resources [2022NGCM11].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
LONG发布了新的文献求助10
2秒前
2秒前
QMM发布了新的文献求助10
2秒前
科研通AI5应助飘逸澜采纳,获得10
3秒前
情怀应助灵巧夜天采纳,获得20
3秒前
迷路小猫崽完成签到,获得积分10
3秒前
4秒前
5秒前
Starry完成签到 ,获得积分10
5秒前
柒柒发布了新的文献求助10
6秒前
hugdoggy完成签到,获得积分10
6秒前
爱lx发布了新的文献求助10
7秒前
ding应助李志敏采纳,获得10
7秒前
LinglongCai完成签到 ,获得积分10
8秒前
章鱼丸子发布了新的文献求助10
8秒前
9秒前
脑洞疼应助444采纳,获得10
9秒前
9秒前
汉堡包应助aniu采纳,获得10
11秒前
溪水完成签到 ,获得积分10
11秒前
13秒前
13秒前
研友_LJGoXn完成签到,获得积分10
14秒前
xiaoyangke完成签到,获得积分10
15秒前
科研通AI5应助秀丽大凄采纳,获得10
17秒前
2026毕业啦发布了新的文献求助10
17秒前
17秒前
英俊的铭应助Enoelle采纳,获得10
18秒前
19秒前
21秒前
汎影发布了新的文献求助10
21秒前
21秒前
xhuryts发布了新的文献求助10
22秒前
24秒前
传奇3应助科研通管家采纳,获得10
24秒前
英姑应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
彭于彦祖应助科研通管家采纳,获得20
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735743
求助须知:如何正确求助?哪些是违规求助? 3279522
关于积分的说明 10015750
捐赠科研通 2996212
什么是DOI,文献DOI怎么找? 1643951
邀请新用户注册赠送积分活动 781630
科研通“疑难数据库(出版商)”最低求助积分说明 749423