亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cooperation of multi-task segmentation and a graph convolutional network for object vector boundary extraction in remote-sensing imagery

计算机科学 人工智能 分割 图形 卷积神经网络 任务(项目管理) 模式识别(心理学) 支持向量机 边界(拓扑) 钥匙(锁) 数据挖掘 理论计算机科学 数学 数学分析 管理 计算机安全 经济
作者
A. P. Wang,Penglin Zhang
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:44 (16): 4911-4936
标识
DOI:10.1080/01431161.2023.2240518
摘要

ABSTRACTIdentifying and vectorizing the object in the image is an important part of producing high-precision vector maps. Deep learning can automatically extract vector boundaries accurately, but it still does not satisfy the application requirements for boundaries. Clearer boundaries and more concise vector points are also important components that cannot be neglected in vectorization. Taking buildings as the research object, we introduce a cooperative neural network of multi-task segmentation and graph convolution to improve the extraction of buildings by strengthening the boundaries and strategically selecting key points. We design a multi-task neural network to extract and optimize the vector boundaries, whose key points can be selected and refined with a graph convolutional network. In addition, to improve the coherence between features and jointly multi-information, we design a mutual-supervision loss for our method. Our experimental results show that our method effectively extracted buildings and outperformed several equal methods on the different public datasets.KEYWORDS: Vector boundary extractionconvolutional neural network (CNN)graph convolutional network (GCN)vector optimization AcknowledgementsThis research was jointly funded by the National Key R&D Program of China, 2022YFC3006305. And it is also supported by the Key Laboratory of National Geographic Census and Monitoring, Ministry of Natural Resources, 2022NGCM11Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported by the National Key R&D Program of China [2022YFC3006305]; Key Laboratory of National Geographic Census and Monitoring, Ministry of Natural Resources [2022NGCM11].

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
儒雅友菱发布了新的文献求助30
10秒前
19秒前
20秒前
科研通AI6应助小啵采纳,获得10
23秒前
32秒前
41秒前
Wuyt应助小啵采纳,获得10
46秒前
DeXu发布了新的文献求助10
47秒前
48秒前
Ava应助王意博采纳,获得10
52秒前
浮游应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
柯语雪完成签到,获得积分10
1分钟前
搜集达人应助DeXu采纳,获得10
1分钟前
zyy完成签到,获得积分10
1分钟前
1分钟前
雪白小丸子完成签到,获得积分10
1分钟前
Funnymudpee发布了新的文献求助10
1分钟前
wuda完成签到,获得积分10
1分钟前
Funnymudpee完成签到,获得积分10
1分钟前
211JZH完成签到 ,获得积分10
1分钟前
西蓝花战士完成签到 ,获得积分10
1分钟前
mkst发布了新的文献求助10
2分钟前
852应助Chanlewu采纳,获得30
2分钟前
2分钟前
YJT发布了新的文献求助10
2分钟前
2分钟前
王意博发布了新的文献求助10
2分钟前
儒雅友菱完成签到,获得积分10
2分钟前
longyuyan完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522648
求助须知:如何正确求助?哪些是违规求助? 4613539
关于积分的说明 14539027
捐赠科研通 4551262
什么是DOI,文献DOI怎么找? 2494124
邀请新用户注册赠送积分活动 1475098
关于科研通互助平台的介绍 1446489