超级电容器
碳化
材料科学
电容
碳纤维
化学工程
电极
电解质
纳米颗粒
纳米技术
气凝胶
复合材料
化学
扫描电子显微镜
复合数
物理化学
工程类
作者
Zhengguo Zhang,Zhicheng Wei,Fang Wang,Shixiong Min
标识
DOI:10.1016/j.jpowsour.2023.233486
摘要
Hybridizing powdery carbons with transition metal phosphides (TMPs) can effectively address the issues of sluggish kinetics and volume expansion associated with TMPs in supercapacitors (SCs). However, the practical use of powdery TMPs/carbon materials in SCs is limited by tedious electrode preparation process, unfavorable performance, and inferior cycling stability. Herein, we develop carbon membrane-based hybrid electrodes (Co2P@CTF) by the direct carbonization of Co-containing tofu (TF) aerogel prepared by coagulating soybean proteins using Co2+ ions. During carbonization, the cross-linked protein frameworks were transformed into a porous, mechanically strong, and conductive carbon matrix, whereas the Co species were in situ self-phosphorized to be highly dispersed carbon-coated Co2P nanoparticles without using external phosphorus sources. The best Co2P@CTF electrode (Co2P@CTF-1000) demonstrates a high areal capacitance (Ca) of 2.44 F cm−2 at 1.0 mA cm−2. Moreover, a symmetric SC assembled with Co2P@CTF-1000 deliveries a Ca of 1.33 F cm−2 at 1.0 mA cm−2, achieves an energy density of 90 μWh cm−2 at a power density of 699.4 μW cm−2, and retains a 104.8% capacitance with a nearly unit coulomb efficiency at 10 mA cm−2 after 50000 cycles. This study offers an effective strategy towards carbon membrane-supported TMPs hybrid electrodes based on the direct self-phosphorization mechanism for the practical applications in SCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI