A Siamese Network With Node Convolution for Individualized Predictions Based on Connectivity Maps Extracted From Resting-State fMRI Data

静息状态功能磁共振成像 瓶颈 计算机科学 样本量测定 样品(材料) 人工智能 卷积(计算机科学) 神经影像学 节点(物理) 模式识别(心理学) 功能磁共振成像 深度学习 回归 均方误差 机器学习 数据挖掘 人工神经网络 统计 数学 医学 工程类 放射科 精神科 嵌入式系统 化学 结构工程 色谱法
作者
Le Xu,Hao Ma,Yun Guan,Jiangcong Liu,Huifang Huang,Yang Zhang,Lixia Tian
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (11): 5418-5429 被引量:3
标识
DOI:10.1109/jbhi.2023.3304974
摘要

Deep learning has demonstrated great potential for objective diagnosis of neuropsychiatric disorders based on neuroimaging data, which includes the promising resting-state functional magnetic resonance imaging (RS-fMRI). However, the insufficient sample size has long been a bottleneck for deep model training for the purpose. In this study, we proposed a Siamese network with node convolution (SNNC) for individualized predictions based on RS-fMRI data. With the involvement of Siamese network, which uses sample pair (rather than a single sample) as input, the problem of insufficient sample size can largely be alleviated. To adapt to connectivity maps extracted from RS-fMRI data, we applied node convolution to each of the two branches of the Siamese network. For regression purposes, we replaced the contrastive loss in classic Siamese network with the mean square error loss and thus enabled Siamese network to quantitatively predict label differences. The label of a test sample can be predicted based on any of the training samples, by adding the label of the training sample to the predicted label difference between them. The final prediction for a test sample in this study was made by averaging the predictions based on each of the training samples. The performance of the proposed SNNC was evaluated with age and IQ predictions based on a public dataset (Cam-CAN). The results indicated that SNNC can make effective predictions even with a sample size of as small as 40, and SNNC achieved state-of-the-art accuracy among a variety of deep models and standard machine learning approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zlx完成签到,获得积分10
刚刚
4秒前
4秒前
5秒前
陈梦鼠发布了新的文献求助10
5秒前
5秒前
6秒前
大反应釜完成签到,获得积分10
7秒前
7秒前
奋斗蜗牛完成签到,获得积分10
9秒前
和平港湾发布了新的文献求助10
9秒前
10秒前
bingchem发布了新的文献求助30
10秒前
xiong xiong发布了新的文献求助10
10秒前
小盘子发布了新的文献求助10
10秒前
小林完成签到,获得积分10
10秒前
丰富的高山完成签到,获得积分10
10秒前
10秒前
牧紫菱完成签到,获得积分10
12秒前
小王同学完成签到,获得积分10
12秒前
艾瑞克完成签到,获得积分10
12秒前
母广明完成签到,获得积分10
13秒前
14秒前
KeYang完成签到,获得积分10
14秒前
酷波er应助veraonly采纳,获得10
14秒前
研友_LXdbaL发布了新的文献求助30
14秒前
15秒前
hfut_lee发布了新的文献求助10
16秒前
DduYy完成签到,获得积分10
17秒前
17秒前
支初晴完成签到 ,获得积分10
18秒前
Vaying完成签到 ,获得积分10
18秒前
19秒前
观自在发布了新的文献求助10
19秒前
大力犀牛完成签到,获得积分10
19秒前
研友_LXdbaL完成签到,获得积分20
20秒前
wocao完成签到 ,获得积分10
23秒前
LIU完成签到,获得积分10
23秒前
JS完成签到 ,获得积分10
23秒前
吐泡泡的奇异果完成签到,获得积分10
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736805
求助须知:如何正确求助?哪些是违规求助? 3280699
关于积分的说明 10020699
捐赠科研通 2997414
什么是DOI,文献DOI怎么找? 1644554
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749668