Magnetic Resonance Deep Learning Radiomic Model Based on Distinct Metastatic Vascular Patterns for Evaluating Recurrence‐Free Survival in Hepatocellular Carcinoma

医学 肝细胞癌 磁共振成像 放射科 血管侵犯 肿瘤科 内科学
作者
Cheng Zhang,Lidi Ma,X Zhang,Lei Cai,Shasha Yuan,Jian‐peng Li,Zhijun Geng,X. Li,Xianyue Quan,Chao Zheng,Yayuan Geng,Jie Zhang,Qiaoli Zheng,Jing Hou,Shu‐yi Xie,Liang‐he Lu,Chuanmiao Xie
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:60 (1): 231-242 被引量:9
标识
DOI:10.1002/jmri.29064
摘要

Background The metastatic vascular patterns of hepatocellular carcinoma (HCC) are mainly microvascular invasion (MVI) and vessels encapsulating tumor clusters (VETC). However, most existing VETC‐related radiological studies still focus on the prediction of VETC status. Purpose This study aimed to build and compare VETC‐MVI related models (clinical, radiomics, and deep learning) associated with recurrence‐free survival of HCC patients. Study Type Retrospective. Population 398 HCC patients (349 male, 49 female; median age 51.7 years, and age range: 22–80 years) who underwent resection from five hospitals in China. The patients were randomly divided into training cohort ( n = 358) and test cohort ( n = 40). Field Strength/Sequence 3‐T, pre‐contrast T1‐weighted imaging spoiled gradient recalled echo (T1WI SPGR), T2‐weighted imaging fast spin echo (T2WI FSE), and contrast enhanced arterial phase (AP), delay phase (DP). Assessment Two radiologists performed the segmentation of HCC on T1WI, T2WI, AP, and DP images, from which radiomic features were extracted. The RFS related clinical characteristics (VETC, MVI, Barcelona stage, tumor maximum diameter, and alpha fetoprotein) and radiomic features were used to build the clinical model, clinical‐radiomic (CR) nomogram, deep learning model. The follow‐up process was done 1 month after resection, and every 3 months subsequently. The RFS was defined as the date of resection to the date of recurrence confirmed by radiology or the last follow‐up. Patients were followed up until December 31, 2022. Statistical Tests Univariate COX regression, least absolute shrinkage and selection operator (LASSO), Kaplan–Meier curves, log‐rank test, C‐index, and area under the curve (AUC). P < 0.05 was considered statistically significant. Results The C‐index of deep learning model achieved 0.830 in test cohort compared with CR nomogram (0.731), radiomic signature (0.707), and clinical model (0.702). The average RFS of the overall patients was 26.77 months (range 1–80 months). Data Conclusion MR deep learning model based on VETC and MVI provides a potential tool for survival assessment. Evidence Level 3 Technical Efficacy Stage 3
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Arrebol完成签到,获得积分10
2秒前
研友_850aeZ完成签到,获得积分0
2秒前
lshao完成签到 ,获得积分10
2秒前
胖头鱼发布了新的文献求助10
3秒前
qrt发布了新的文献求助10
4秒前
阿尔法贝塔完成签到 ,获得积分10
5秒前
zhou完成签到,获得积分10
5秒前
delect完成签到,获得积分10
6秒前
安详的觅风完成签到,获得积分10
6秒前
敏er完成签到,获得积分10
6秒前
孙明浩完成签到 ,获得积分10
8秒前
9秒前
元气少女猪刚鬣完成签到,获得积分10
10秒前
cmh完成签到 ,获得积分10
12秒前
漂南仰完成签到,获得积分10
13秒前
bmhs2017发布了新的文献求助10
14秒前
无私的电灯胆完成签到,获得积分10
14秒前
乐乐应助小李老博采纳,获得10
15秒前
唐诗阅完成签到,获得积分10
18秒前
xulei完成签到,获得积分20
18秒前
20秒前
Amon完成签到 ,获得积分10
21秒前
Ying完成签到 ,获得积分10
21秒前
放逐发布了新的文献求助10
23秒前
NexusExplorer应助无辜群众采纳,获得10
23秒前
C胖胖完成签到,获得积分10
25秒前
感性的俊驰完成签到 ,获得积分10
29秒前
舒适可乐完成签到,获得积分10
29秒前
Edou发布了新的文献求助10
29秒前
30秒前
fybd88应助醉澜晖采纳,获得10
32秒前
感动的听荷完成签到,获得积分10
34秒前
xulei发布了新的文献求助10
36秒前
Perry完成签到,获得积分10
36秒前
精明的盼雁完成签到,获得积分10
37秒前
sswy完成签到 ,获得积分10
38秒前
38秒前
悠米爱吃图奇完成签到 ,获得积分10
39秒前
888应助雪白弱采纳,获得60
39秒前
柚米完成签到,获得积分10
40秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378793
求助须知:如何正确求助?哪些是违规求助? 4503229
关于积分的说明 14015370
捐赠科研通 4411933
什么是DOI,文献DOI怎么找? 2423548
邀请新用户注册赠送积分活动 1416499
关于科研通互助平台的介绍 1393963