Magnetic Resonance Deep Learning Radiomic Model Based on Distinct Metastatic Vascular Patterns for Evaluating Recurrence‐Free Survival in Hepatocellular Carcinoma

医学 肝细胞癌 磁共振成像 放射科 血管侵犯 肿瘤科 内科学
作者
Cheng Zhang,Lidi Ma,X Zhang,Lei Cai,Shasha Yuan,Jian‐peng Li,Zhijun Geng,X. Li,Xianyue Quan,Chao Zheng,Yayuan Geng,Jie Zhang,Qiaoli Zheng,Jing Hou,Shu‐yi Xie,Liang‐he Lu,Chuanmiao Xie
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:60 (1): 231-242 被引量:9
标识
DOI:10.1002/jmri.29064
摘要

Background The metastatic vascular patterns of hepatocellular carcinoma (HCC) are mainly microvascular invasion (MVI) and vessels encapsulating tumor clusters (VETC). However, most existing VETC‐related radiological studies still focus on the prediction of VETC status. Purpose This study aimed to build and compare VETC‐MVI related models (clinical, radiomics, and deep learning) associated with recurrence‐free survival of HCC patients. Study Type Retrospective. Population 398 HCC patients (349 male, 49 female; median age 51.7 years, and age range: 22–80 years) who underwent resection from five hospitals in China. The patients were randomly divided into training cohort ( n = 358) and test cohort ( n = 40). Field Strength/Sequence 3‐T, pre‐contrast T1‐weighted imaging spoiled gradient recalled echo (T1WI SPGR), T2‐weighted imaging fast spin echo (T2WI FSE), and contrast enhanced arterial phase (AP), delay phase (DP). Assessment Two radiologists performed the segmentation of HCC on T1WI, T2WI, AP, and DP images, from which radiomic features were extracted. The RFS related clinical characteristics (VETC, MVI, Barcelona stage, tumor maximum diameter, and alpha fetoprotein) and radiomic features were used to build the clinical model, clinical‐radiomic (CR) nomogram, deep learning model. The follow‐up process was done 1 month after resection, and every 3 months subsequently. The RFS was defined as the date of resection to the date of recurrence confirmed by radiology or the last follow‐up. Patients were followed up until December 31, 2022. Statistical Tests Univariate COX regression, least absolute shrinkage and selection operator (LASSO), Kaplan–Meier curves, log‐rank test, C‐index, and area under the curve (AUC). P < 0.05 was considered statistically significant. Results The C‐index of deep learning model achieved 0.830 in test cohort compared with CR nomogram (0.731), radiomic signature (0.707), and clinical model (0.702). The average RFS of the overall patients was 26.77 months (range 1–80 months). Data Conclusion MR deep learning model based on VETC and MVI provides a potential tool for survival assessment. Evidence Level 3 Technical Efficacy Stage 3
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
FXT完成签到 ,获得积分10
1秒前
雪王应助正版DY采纳,获得10
2秒前
2秒前
谓风完成签到,获得积分10
2秒前
3秒前
拉长的秋白完成签到 ,获得积分10
4秒前
laity完成签到,获得积分10
4秒前
4秒前
Momomo完成签到 ,获得积分10
5秒前
6秒前
7秒前
7秒前
嗷呜小老虎WHY完成签到 ,获得积分10
7秒前
9秒前
11秒前
佳妹儿发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
14秒前
Aggie发布了新的文献求助10
14秒前
licc发布了新的文献求助10
14秒前
FxF完成签到,获得积分10
15秒前
Dun发布了新的文献求助10
16秒前
16秒前
17秒前
深情安青应助佳妹儿采纳,获得10
18秒前
泡泡关注了科研通微信公众号
19秒前
19秒前
思静静发布了新的文献求助10
19秒前
21秒前
星辰大海应助于夜柳采纳,获得10
21秒前
lynn221204发布了新的文献求助10
21秒前
22秒前
HongMou完成签到,获得积分10
23秒前
Aggie完成签到,获得积分10
23秒前
王sir完成签到,获得积分10
24秒前
风中的善愁完成签到,获得积分10
27秒前
liu完成签到 ,获得积分10
27秒前
Garnieta完成签到,获得积分10
27秒前
深情安青应助无私翎采纳,获得10
28秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142263
求助须知:如何正确求助?哪些是违规求助? 4340519
关于积分的说明 13517711
捐赠科研通 4180433
什么是DOI,文献DOI怎么找? 2292461
邀请新用户注册赠送积分活动 1293045
关于科研通互助平台的介绍 1235591