Magnetic Resonance Deep Learning Radiomic Model Based on Distinct Metastatic Vascular Patterns for Evaluating Recurrence‐Free Survival in Hepatocellular Carcinoma

医学 肝细胞癌 磁共振成像 放射科 血管侵犯 肿瘤科 内科学
作者
Cheng Zhang,Lidi Ma,X Zhang,Lei Cai,Shasha Yuan,Jian‐peng Li,Zhijun Geng,X. Li,Xianyue Quan,Chao Zheng,Yayuan Geng,Jie Zhang,Qiaoli Zheng,Jing Hou,Shu‐yi Xie,Liang‐he Lu,Chuanmiao Xie
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:60 (1): 231-242 被引量:9
标识
DOI:10.1002/jmri.29064
摘要

Background The metastatic vascular patterns of hepatocellular carcinoma (HCC) are mainly microvascular invasion (MVI) and vessels encapsulating tumor clusters (VETC). However, most existing VETC‐related radiological studies still focus on the prediction of VETC status. Purpose This study aimed to build and compare VETC‐MVI related models (clinical, radiomics, and deep learning) associated with recurrence‐free survival of HCC patients. Study Type Retrospective. Population 398 HCC patients (349 male, 49 female; median age 51.7 years, and age range: 22–80 years) who underwent resection from five hospitals in China. The patients were randomly divided into training cohort ( n = 358) and test cohort ( n = 40). Field Strength/Sequence 3‐T, pre‐contrast T1‐weighted imaging spoiled gradient recalled echo (T1WI SPGR), T2‐weighted imaging fast spin echo (T2WI FSE), and contrast enhanced arterial phase (AP), delay phase (DP). Assessment Two radiologists performed the segmentation of HCC on T1WI, T2WI, AP, and DP images, from which radiomic features were extracted. The RFS related clinical characteristics (VETC, MVI, Barcelona stage, tumor maximum diameter, and alpha fetoprotein) and radiomic features were used to build the clinical model, clinical‐radiomic (CR) nomogram, deep learning model. The follow‐up process was done 1 month after resection, and every 3 months subsequently. The RFS was defined as the date of resection to the date of recurrence confirmed by radiology or the last follow‐up. Patients were followed up until December 31, 2022. Statistical Tests Univariate COX regression, least absolute shrinkage and selection operator (LASSO), Kaplan–Meier curves, log‐rank test, C‐index, and area under the curve (AUC). P < 0.05 was considered statistically significant. Results The C‐index of deep learning model achieved 0.830 in test cohort compared with CR nomogram (0.731), radiomic signature (0.707), and clinical model (0.702). The average RFS of the overall patients was 26.77 months (range 1–80 months). Data Conclusion MR deep learning model based on VETC and MVI provides a potential tool for survival assessment. Evidence Level 3 Technical Efficacy Stage 3
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
陈媛发布了新的文献求助10
4秒前
JOJO完成签到,获得积分10
4秒前
Lucas应助ccc1采纳,获得10
4秒前
liudw完成签到,获得积分10
5秒前
周翔完成签到,获得积分10
5秒前
eric888应助winndsd2采纳,获得150
5秒前
机智采枫完成签到 ,获得积分10
5秒前
无辜的猎豹完成签到 ,获得积分10
5秒前
6秒前
mix完成签到,获得积分10
6秒前
dht发布了新的文献求助10
6秒前
6秒前
PhD发布了新的文献求助10
6秒前
科研通AI6应助bin采纳,获得30
6秒前
尉迟希望应助君莫笑采纳,获得10
6秒前
7秒前
归尘发布了新的文献求助10
8秒前
秋鱼完成签到,获得积分10
8秒前
小王发布了新的文献求助10
8秒前
小竹笋完成签到,获得积分10
8秒前
狂野的凡旋完成签到,获得积分10
8秒前
9秒前
嘻嘻完成签到,获得积分10
9秒前
研友_8WO978完成签到,获得积分10
9秒前
正直海之完成签到,获得积分10
9秒前
1397完成签到 ,获得积分10
10秒前
10秒前
大海完成签到,获得积分10
10秒前
Su发布了新的文献求助10
10秒前
ww完成签到,获得积分10
10秒前
mirror完成签到,获得积分10
12秒前
12秒前
13秒前
秋鱼发布了新的文献求助10
13秒前
wanghuan完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439589
求助须知:如何正确求助?哪些是违规求助? 4550712
关于积分的说明 14226011
捐赠科研通 4471804
什么是DOI,文献DOI怎么找? 2450484
邀请新用户注册赠送积分活动 1441341
关于科研通互助平台的介绍 1417912