Magnetic Resonance Deep Learning Radiomic Model Based on Distinct Metastatic Vascular Patterns for Evaluating Recurrence‐Free Survival in Hepatocellular Carcinoma

医学 肝细胞癌 磁共振成像 放射科 血管侵犯 肿瘤科 内科学
作者
Cheng Zhang,Lidi Ma,X Zhang,Lei Cai,Shasha Yuan,Jian‐peng Li,Zhijun Geng,X. Li,Xianyue Quan,Chao Zheng,Yayuan Geng,Jie Zhang,Qin‐Guo Zheng,Jing Hou,Shu‐yi Xie,Liang‐he Lu,Chuanmiao Xie
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:60 (1): 231-242 被引量:1
标识
DOI:10.1002/jmri.29064
摘要

Background The metastatic vascular patterns of hepatocellular carcinoma (HCC) are mainly microvascular invasion (MVI) and vessels encapsulating tumor clusters (VETC). However, most existing VETC‐related radiological studies still focus on the prediction of VETC status. Purpose This study aimed to build and compare VETC‐MVI related models (clinical, radiomics, and deep learning) associated with recurrence‐free survival of HCC patients. Study Type Retrospective. Population 398 HCC patients (349 male, 49 female; median age 51.7 years, and age range: 22–80 years) who underwent resection from five hospitals in China. The patients were randomly divided into training cohort ( n = 358) and test cohort ( n = 40). Field Strength/Sequence 3‐T, pre‐contrast T1‐weighted imaging spoiled gradient recalled echo (T1WI SPGR), T2‐weighted imaging fast spin echo (T2WI FSE), and contrast enhanced arterial phase (AP), delay phase (DP). Assessment Two radiologists performed the segmentation of HCC on T1WI, T2WI, AP, and DP images, from which radiomic features were extracted. The RFS related clinical characteristics (VETC, MVI, Barcelona stage, tumor maximum diameter, and alpha fetoprotein) and radiomic features were used to build the clinical model, clinical‐radiomic (CR) nomogram, deep learning model. The follow‐up process was done 1 month after resection, and every 3 months subsequently. The RFS was defined as the date of resection to the date of recurrence confirmed by radiology or the last follow‐up. Patients were followed up until December 31, 2022. Statistical Tests Univariate COX regression, least absolute shrinkage and selection operator (LASSO), Kaplan–Meier curves, log‐rank test, C‐index, and area under the curve (AUC). P < 0.05 was considered statistically significant. Results The C‐index of deep learning model achieved 0.830 in test cohort compared with CR nomogram (0.731), radiomic signature (0.707), and clinical model (0.702). The average RFS of the overall patients was 26.77 months (range 1–80 months). Data Conclusion MR deep learning model based on VETC and MVI provides a potential tool for survival assessment. Evidence Level 3 Technical Efficacy Stage 3
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岁月静好Taoyi完成签到 ,获得积分10
1秒前
山城完成签到 ,获得积分10
1秒前
蜗牛fei完成签到,获得积分10
2秒前
Fxxkme发布了新的文献求助10
2秒前
Lin_Yongqi完成签到 ,获得积分10
3秒前
3秒前
三块石头发布了新的文献求助10
4秒前
贵金属发布了新的文献求助10
4秒前
4秒前
科研通AI2S应助cassie采纳,获得10
4秒前
专一的白萱完成签到 ,获得积分10
4秒前
青云完成签到,获得积分10
5秒前
6秒前
南吕廿八完成签到,获得积分10
8秒前
无辜的兔子完成签到,获得积分10
8秒前
粒粒发布了新的文献求助10
8秒前
落落完成签到,获得积分10
9秒前
fnder完成签到 ,获得积分20
9秒前
tulips发布了新的文献求助10
9秒前
yk完成签到 ,获得积分10
10秒前
三块石头完成签到,获得积分10
11秒前
唐唐完成签到 ,获得积分10
11秒前
zxd完成签到,获得积分10
12秒前
12秒前
一程完成签到 ,获得积分10
12秒前
赵十一完成签到,获得积分10
12秒前
神秘面筋男完成签到,获得积分10
12秒前
nature完成签到,获得积分10
12秒前
12秒前
xing完成签到,获得积分10
13秒前
五月完成签到 ,获得积分10
14秒前
研友_LpvQlZ完成签到,获得积分10
14秒前
老迟到的小蘑菇完成签到 ,获得积分10
15秒前
yolodys完成签到,获得积分10
15秒前
Sunshine发布了新的文献求助10
16秒前
haohao完成签到,获得积分10
16秒前
锦诗完成签到,获得积分10
16秒前
17秒前
xing完成签到,获得积分10
18秒前
ttkd11完成签到,获得积分10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134060
求助须知:如何正确求助?哪些是违规求助? 2784861
关于积分的说明 7769107
捐赠科研通 2440349
什么是DOI,文献DOI怎么找? 1297368
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792