Magnetic Resonance Deep Learning Radiomic Model Based on Distinct Metastatic Vascular Patterns for Evaluating Recurrence‐Free Survival in Hepatocellular Carcinoma

医学 肝细胞癌 磁共振成像 放射科 血管侵犯 肿瘤科 内科学
作者
Cheng Zhang,Lidi Ma,X Zhang,Lei Cai,Shasha Yuan,Jian‐peng Li,Zhijun Geng,X. Li,Xianyue Quan,Chao Zheng,Yayuan Geng,Jie Zhang,Qiaoli Zheng,Jing Hou,Shu‐yi Xie,Liang‐he Lu,Chuanmiao Xie
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:60 (1): 231-242 被引量:9
标识
DOI:10.1002/jmri.29064
摘要

Background The metastatic vascular patterns of hepatocellular carcinoma (HCC) are mainly microvascular invasion (MVI) and vessels encapsulating tumor clusters (VETC). However, most existing VETC‐related radiological studies still focus on the prediction of VETC status. Purpose This study aimed to build and compare VETC‐MVI related models (clinical, radiomics, and deep learning) associated with recurrence‐free survival of HCC patients. Study Type Retrospective. Population 398 HCC patients (349 male, 49 female; median age 51.7 years, and age range: 22–80 years) who underwent resection from five hospitals in China. The patients were randomly divided into training cohort ( n = 358) and test cohort ( n = 40). Field Strength/Sequence 3‐T, pre‐contrast T1‐weighted imaging spoiled gradient recalled echo (T1WI SPGR), T2‐weighted imaging fast spin echo (T2WI FSE), and contrast enhanced arterial phase (AP), delay phase (DP). Assessment Two radiologists performed the segmentation of HCC on T1WI, T2WI, AP, and DP images, from which radiomic features were extracted. The RFS related clinical characteristics (VETC, MVI, Barcelona stage, tumor maximum diameter, and alpha fetoprotein) and radiomic features were used to build the clinical model, clinical‐radiomic (CR) nomogram, deep learning model. The follow‐up process was done 1 month after resection, and every 3 months subsequently. The RFS was defined as the date of resection to the date of recurrence confirmed by radiology or the last follow‐up. Patients were followed up until December 31, 2022. Statistical Tests Univariate COX regression, least absolute shrinkage and selection operator (LASSO), Kaplan–Meier curves, log‐rank test, C‐index, and area under the curve (AUC). P < 0.05 was considered statistically significant. Results The C‐index of deep learning model achieved 0.830 in test cohort compared with CR nomogram (0.731), radiomic signature (0.707), and clinical model (0.702). The average RFS of the overall patients was 26.77 months (range 1–80 months). Data Conclusion MR deep learning model based on VETC and MVI provides a potential tool for survival assessment. Evidence Level 3 Technical Efficacy Stage 3
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaxia42完成签到 ,获得积分10
刚刚
刚刚
2秒前
老阎应助七七采纳,获得30
2秒前
Star完成签到,获得积分10
4秒前
kevinjy完成签到,获得积分10
4秒前
xavier完成签到,获得积分10
5秒前
sysi发布了新的文献求助10
8秒前
8秒前
9秒前
11秒前
LiDaYang完成签到,获得积分10
13秒前
orixero应助友好奇异果采纳,获得10
14秒前
丸子完成签到,获得积分10
15秒前
15秒前
嘿哈完成签到,获得积分10
18秒前
apt完成签到 ,获得积分10
18秒前
吴右西完成签到 ,获得积分20
21秒前
Brady6完成签到,获得积分10
22秒前
Ann完成签到,获得积分10
22秒前
眼睛大泥猴桃完成签到,获得积分20
22秒前
无痕梦完成签到 ,获得积分10
25秒前
耍酷寻双完成签到 ,获得积分10
25秒前
26秒前
zyw完成签到 ,获得积分10
28秒前
30秒前
罗大海完成签到,获得积分10
30秒前
hahaha完成签到,获得积分10
30秒前
31秒前
nicky完成签到 ,获得积分10
32秒前
34秒前
sysi完成签到,获得积分10
35秒前
Owen应助NEWEST采纳,获得10
36秒前
噜噜噜完成签到,获得积分10
36秒前
学术小白完成签到,获得积分10
36秒前
liao_duoduo完成签到,获得积分10
37秒前
43秒前
yyy完成签到,获得积分0
43秒前
46秒前
山神厘子完成签到,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304405
求助须知:如何正确求助?哪些是违规求助? 4450962
关于积分的说明 13850152
捐赠科研通 4337939
什么是DOI,文献DOI怎么找? 2381725
邀请新用户注册赠送积分活动 1376759
关于科研通互助平台的介绍 1343885