清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Efficient Supervised Graph Embedding Hashing for large-scale cross-media retrieval

计算机科学 散列函数 嵌入 理论计算机科学 图嵌入 拉普拉斯矩阵 图形 算法 人工智能 计算机安全
作者
Tao Yao,Ruxin Wang,Jintao Wang,Ying Li,Jun Yue,Yan Liu,Qi Tian
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:145: 109934-109934
标识
DOI:10.1016/j.patcog.2023.109934
摘要

Recently, graph based hashing has gained much attention due to its effectiveness in multi-media retrieval. Although several graph embedding based works have been designed and achieved promising performance, there are still some issues that need to be feather studied, including, (1) one significant drawback of graph embedding is its expensive memory and computation cost caused by the graph Laplacian matrix; (2) most pioneer works fail to fully explore the available class labels in training procedure, which generally makes them suffer from unsatisfactory retrieval performance. To overcome these drawbacks, we propose a simple yet effective supervised cross-media hashing scheme, termed Efficient Supervised Graph Embedding Hashing (ESGEH), which can simultaneously learn hash functions and discrete binary codes efficiently. Specifically, ESGEH leverages both class label based semantic embedding and graph embedding to generate a sharing semantic subspace, and class labels are also incorporated to minimize the quantization error for better approximating the generated binary codes. In order to reduce the computational sources, a well-designed intermediate terms decomposition is proposed to avoid explicitly computing the graph Laplacian matrix. Finally, an iterative discrete optimal algorithm is derived to solve above problem, and each subproblem can yield a closed-form solution. Extensive experimental results on four public datasets demonstrate the superiority of the proposed approach over several existing cross-media hashing methods in terms of both accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助酷炫的一笑采纳,获得10
4秒前
Silence完成签到 ,获得积分10
7秒前
vampire完成签到,获得积分10
15秒前
24秒前
27秒前
eth完成签到 ,获得积分10
32秒前
creep2020完成签到,获得积分10
32秒前
43秒前
47秒前
乔杰完成签到 ,获得积分10
57秒前
量子星尘发布了新的文献求助10
1分钟前
独孤完成签到 ,获得积分10
1分钟前
1分钟前
我独舞完成签到 ,获得积分10
1分钟前
任性翠安完成签到 ,获得积分10
1分钟前
英俊的铭应助111111111采纳,获得10
1分钟前
疯狂的囧完成签到 ,获得积分10
1分钟前
2分钟前
开心每一天完成签到 ,获得积分10
2分钟前
111111111发布了新的文献求助10
2分钟前
zhang完成签到 ,获得积分10
2分钟前
poki完成签到 ,获得积分10
2分钟前
2分钟前
Jasper应助怪杰采纳,获得10
2分钟前
陌上之心完成签到 ,获得积分10
2分钟前
2分钟前
yi完成签到 ,获得积分10
2分钟前
慕青应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
文献搬运工完成签到 ,获得积分10
2分钟前
怪杰发布了新的文献求助10
2分钟前
蚂蚁踢大象完成签到 ,获得积分10
2分钟前
无敌暴龙战神完成签到,获得积分10
3分钟前
科研通AI2S应助111111111采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
科目三应助Una采纳,获得10
3分钟前
GG完成签到 ,获得积分10
3分钟前
呆呆的猕猴桃完成签到 ,获得积分10
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957101
求助须知:如何正确求助?哪些是违规求助? 3503095
关于积分的说明 11111294
捐赠科研通 3234212
什么是DOI,文献DOI怎么找? 1787802
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802292