SemiMAR: Semi-Supervised Learning for CT Metal Artifact Reduction

计算机科学 人工智能 深度学习 工件(错误) 发电机(电路理论) 监督学习 还原(数学) 模式识别(心理学) 半监督学习 特征(语言学) 领域(数学分析) 机器学习 计算机视觉 人工神经网络 功率(物理) 数学分析 语言学 物理 几何学 数学 哲学 量子力学
作者
Tao Wang,Hui Yu,Zhiwen Wang,Hu Chen,Yan Liu,Jingfeng Lu,Yi Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (11): 5369-5380 被引量:9
标识
DOI:10.1109/jbhi.2023.3312292
摘要

Metal artifacts lead to CT imaging quality degradation. With the success of deep learning (DL) in medical imaging, a number of DL-based supervised methods have been developed for metal artifact reduction (MAR). Nonetheless, fully-supervised MAR methods based on simulated data do not perform well on clinical data due to the domain gap. Although this problem can be avoided in an unsupervised way to a certain degree, severe artifacts cannot be well suppressed in clinical practice. Recently, semi-supervised metal artifact reduction (MAR) methods have gained wide attention due to their ability in narrowing the domain gap and improving MAR performance in clinical data. However, these methods typically require large model sizes, posing challenges for optimization. To address this issue, we propose a novel semi-supervised MAR framework. In our framework, only the artifact-free parts are learned, and the artifacts are inferred by subtracting these clean parts from the metal-corrupted CT images. Our approach leverages a single generator to execute all complex transformations, thereby reducing the model's scale and preventing overlap between clean part and artifacts. To recover more tissue details, we distill the knowledge from the advanced dual-domain MAR network into our model in both image domain and latent feature space. The latent space constraint is achieved via contrastive learning. We also evaluate the impact of different generator architectures by investigating several mainstream deep learning-based MAR backbones. Our experiments demonstrate that the proposed method competes favorably with several state-of-the-art semi-supervised MAR techniques in both qualitative and quantitative aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
周周周发布了新的文献求助10
刚刚
1秒前
1秒前
思源应助渺渺采纳,获得10
1秒前
77发布了新的文献求助10
2秒前
Liens发布了新的文献求助10
2秒前
奋斗的紫易完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
顾南衣发布了新的文献求助10
6秒前
uiui完成签到,获得积分10
6秒前
李健应助药神L采纳,获得10
8秒前
Cici的新长征完成签到 ,获得积分10
8秒前
Genius发布了新的文献求助10
8秒前
追寻的夏波应助obito采纳,获得10
9秒前
科研通AI6应助周周周采纳,获得10
9秒前
11秒前
木木杨完成签到,获得积分10
12秒前
潇洒的冰淇淋完成签到,获得积分10
12秒前
13秒前
zzzzzzzzzzzz发布了新的文献求助10
13秒前
13秒前
Akim应助HUYAOWEI采纳,获得10
13秒前
无极微光应助HUYAOWEI采纳,获得20
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
15秒前
深情的新儿完成签到,获得积分10
16秒前
虚幻的芷珊完成签到,获得积分10
17秒前
clio完成签到,获得积分10
17秒前
ri_290发布了新的文献求助10
18秒前
18秒前
所所应助耍酷问兰采纳,获得10
18秒前
scuter发布了新的文献求助10
18秒前
19秒前
渺渺发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594302
求助须知:如何正确求助?哪些是违规求助? 4679974
关于积分的说明 14812661
捐赠科研通 4646837
什么是DOI,文献DOI怎么找? 2534882
邀请新用户注册赠送积分活动 1502862
关于科研通互助平台的介绍 1469497