SemiMAR: Semi-Supervised Learning for CT Metal Artifact Reduction

计算机科学 人工智能 深度学习 工件(错误) 发电机(电路理论) 监督学习 还原(数学) 模式识别(心理学) 半监督学习 特征(语言学) 领域(数学分析) 机器学习 计算机视觉 人工神经网络 功率(物理) 数学分析 语言学 物理 几何学 数学 哲学 量子力学
作者
Tao Wang,Hui Yu,Zhiwen Wang,Hu Chen,Yan Liu,Jingfeng Lu,Yi Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (11): 5369-5380 被引量:3
标识
DOI:10.1109/jbhi.2023.3312292
摘要

Metal artifacts lead to CT imaging quality degradation. With the success of deep learning (DL) in medical imaging, a number of DL-based supervised methods have been developed for metal artifact reduction (MAR). Nonetheless, fully-supervised MAR methods based on simulated data do not perform well on clinical data due to the domain gap. Although this problem can be avoided in an unsupervised way to a certain degree, severe artifacts cannot be well suppressed in clinical practice. Recently, semi-supervised metal artifact reduction (MAR) methods have gained wide attention due to their ability in narrowing the domain gap and improving MAR performance in clinical data. However, these methods typically require large model sizes, posing challenges for optimization. To address this issue, we propose a novel semi-supervised MAR framework. In our framework, only the artifact-free parts are learned, and the artifacts are inferred by subtracting these clean parts from the metal-corrupted CT images. Our approach leverages a single generator to execute all complex transformations, thereby reducing the model's scale and preventing overlap between clean part and artifacts. To recover more tissue details, we distill the knowledge from the advanced dual-domain MAR network into our model in both image domain and latent feature space. The latent space constraint is achieved via contrastive learning. We also evaluate the impact of different generator architectures by investigating several mainstream deep learning-based MAR backbones. Our experiments demonstrate that the proposed method competes favorably with several state-of-the-art semi-supervised MAR techniques in both qualitative and quantitative aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助空白采纳,获得10
刚刚
1秒前
个性问寒发布了新的文献求助10
1秒前
1秒前
bkagyin应助cl0928采纳,获得10
1秒前
可爱的函函应助卡卡西采纳,获得10
2秒前
miketyson完成签到,获得积分10
2秒前
葛根发布了新的文献求助10
2秒前
NMSL发布了新的文献求助10
2秒前
川盈完成签到,获得积分10
3秒前
嘻yyy完成签到 ,获得积分10
3秒前
刘yuer发布了新的文献求助10
3秒前
科研通AI2S应助你要学好采纳,获得10
4秒前
斯文败类应助王浩宇采纳,获得10
5秒前
6秒前
木子草甜完成签到,获得积分10
6秒前
蜂蜜发布了新的文献求助10
6秒前
6秒前
7秒前
Yziii应助狂歌痛饮空度日采纳,获得20
7秒前
娇气的友易完成签到,获得积分10
8秒前
李爱国应助NMSL采纳,获得10
8秒前
爆米花应助Miya_han采纳,获得10
8秒前
Jasper应助YDSL采纳,获得10
9秒前
酷酷的火龙果关注了科研通微信公众号
10秒前
10秒前
常乐的大宝剑完成签到,获得积分10
10秒前
大胆诗霜完成签到,获得积分10
10秒前
2123121321321发布了新的文献求助10
11秒前
sqrt138发布了新的文献求助10
11秒前
11秒前
胡图图完成签到,获得积分10
11秒前
12秒前
13秒前
yongkun发布了新的文献求助10
13秒前
陌路完成签到,获得积分10
14秒前
14秒前
可靠的饼干完成签到,获得积分20
14秒前
15秒前
踏实的智宸完成签到,获得积分10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134416
求助须知:如何正确求助?哪些是违规求助? 2785328
关于积分的说明 7771336
捐赠科研通 2440922
什么是DOI,文献DOI怎么找? 1297593
科研通“疑难数据库(出版商)”最低求助积分说明 625007
版权声明 600792