SemiMAR: Semi-Supervised Learning for CT Metal Artifact Reduction

计算机科学 人工智能 深度学习 工件(错误) 发电机(电路理论) 监督学习 还原(数学) 模式识别(心理学) 半监督学习 特征(语言学) 领域(数学分析) 机器学习 计算机视觉 人工神经网络 功率(物理) 数学分析 语言学 物理 几何学 数学 哲学 量子力学
作者
Tao Wang,Hui Yu,Zhiwen Wang,Hu Chen,Yan Liu,Jingfeng Lu,Yi Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (11): 5369-5380 被引量:9
标识
DOI:10.1109/jbhi.2023.3312292
摘要

Metal artifacts lead to CT imaging quality degradation. With the success of deep learning (DL) in medical imaging, a number of DL-based supervised methods have been developed for metal artifact reduction (MAR). Nonetheless, fully-supervised MAR methods based on simulated data do not perform well on clinical data due to the domain gap. Although this problem can be avoided in an unsupervised way to a certain degree, severe artifacts cannot be well suppressed in clinical practice. Recently, semi-supervised metal artifact reduction (MAR) methods have gained wide attention due to their ability in narrowing the domain gap and improving MAR performance in clinical data. However, these methods typically require large model sizes, posing challenges for optimization. To address this issue, we propose a novel semi-supervised MAR framework. In our framework, only the artifact-free parts are learned, and the artifacts are inferred by subtracting these clean parts from the metal-corrupted CT images. Our approach leverages a single generator to execute all complex transformations, thereby reducing the model's scale and preventing overlap between clean part and artifacts. To recover more tissue details, we distill the knowledge from the advanced dual-domain MAR network into our model in both image domain and latent feature space. The latent space constraint is achieved via contrastive learning. We also evaluate the impact of different generator architectures by investigating several mainstream deep learning-based MAR backbones. Our experiments demonstrate that the proposed method competes favorably with several state-of-the-art semi-supervised MAR techniques in both qualitative and quantitative aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
panpan发布了新的文献求助10
1秒前
2秒前
科研通AI6应助兰粥拉面采纳,获得10
2秒前
3秒前
Yin完成签到,获得积分10
4秒前
芋圆发布了新的文献求助10
4秒前
5秒前
稳重冰兰完成签到 ,获得积分20
5秒前
dyjjudy发布了新的文献求助10
6秒前
6秒前
zhu发布了新的文献求助10
8秒前
8秒前
科研通AI6应助AUBECHU采纳,获得10
8秒前
LD发布了新的文献求助10
9秒前
汉堡包应助AI采纳,获得10
9秒前
天天快乐应助啦啦啦采纳,获得10
10秒前
Jessiez94发布了新的文献求助10
10秒前
斯文败类应助xmy采纳,获得10
10秒前
11秒前
wanci应助何苏苏采纳,获得10
11秒前
充电宝应助guyankuan采纳,获得10
12秒前
科研通AI2S应助美女采纳,获得10
15秒前
16秒前
大渡河完成签到,获得积分10
16秒前
17秒前
今后应助百杜采纳,获得10
18秒前
19秒前
19秒前
梦里荒芜发布了新的文献求助10
20秒前
20秒前
顺利翠萱完成签到,获得积分10
21秒前
22秒前
cjh发布了新的文献求助30
22秒前
22秒前
momo关注了科研通微信公众号
22秒前
小黑发布了新的文献求助10
23秒前
科研通AI6应助仙妮宝贝采纳,获得10
23秒前
24秒前
25秒前
小马甲应助HF采纳,获得10
25秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5343193
求助须知:如何正确求助?哪些是违规求助? 4478776
关于积分的说明 13940737
捐赠科研通 4375743
什么是DOI,文献DOI怎么找? 2404236
邀请新用户注册赠送积分活动 1396745
关于科研通互助平台的介绍 1369116