SemiMAR: Semi-Supervised Learning for CT Metal Artifact Reduction

计算机科学 人工智能 深度学习 工件(错误) 发电机(电路理论) 监督学习 还原(数学) 模式识别(心理学) 半监督学习 特征(语言学) 领域(数学分析) 机器学习 计算机视觉 人工神经网络 功率(物理) 数学分析 语言学 物理 几何学 数学 哲学 量子力学
作者
Tao Wang,Hui Yu,Zhiwen Wang,Hu Chen,Yan Liu,Jingfeng Lu,Yi Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (11): 5369-5380 被引量:9
标识
DOI:10.1109/jbhi.2023.3312292
摘要

Metal artifacts lead to CT imaging quality degradation. With the success of deep learning (DL) in medical imaging, a number of DL-based supervised methods have been developed for metal artifact reduction (MAR). Nonetheless, fully-supervised MAR methods based on simulated data do not perform well on clinical data due to the domain gap. Although this problem can be avoided in an unsupervised way to a certain degree, severe artifacts cannot be well suppressed in clinical practice. Recently, semi-supervised metal artifact reduction (MAR) methods have gained wide attention due to their ability in narrowing the domain gap and improving MAR performance in clinical data. However, these methods typically require large model sizes, posing challenges for optimization. To address this issue, we propose a novel semi-supervised MAR framework. In our framework, only the artifact-free parts are learned, and the artifacts are inferred by subtracting these clean parts from the metal-corrupted CT images. Our approach leverages a single generator to execute all complex transformations, thereby reducing the model's scale and preventing overlap between clean part and artifacts. To recover more tissue details, we distill the knowledge from the advanced dual-domain MAR network into our model in both image domain and latent feature space. The latent space constraint is achieved via contrastive learning. We also evaluate the impact of different generator architectures by investigating several mainstream deep learning-based MAR backbones. Our experiments demonstrate that the proposed method competes favorably with several state-of-the-art semi-supervised MAR techniques in both qualitative and quantitative aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
看文献了发布了新的文献求助10
1秒前
小二郎应助DTO采纳,获得10
1秒前
筱筱发布了新的文献求助10
1秒前
天天发布了新的文献求助10
2秒前
新手小夏发布了新的文献求助10
2秒前
3秒前
夏季完成签到,获得积分10
3秒前
852应助MG采纳,获得10
4秒前
牛蛙丶丶发布了新的文献求助10
4秒前
轻松的小虾米完成签到,获得积分10
4秒前
汉堡包应助zhouyin2采纳,获得10
5秒前
lilili应助加油采纳,获得10
5秒前
5秒前
咕咕咕发布了新的文献求助10
6秒前
研友_8QxayZ发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
zxy完成签到,获得积分10
6秒前
linjiebro完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
脑洞疼应助小狒狒采纳,获得10
8秒前
Fu完成签到,获得积分20
8秒前
dd发布了新的文献求助10
8秒前
9秒前
张沐金发布了新的文献求助10
9秒前
小二郎应助勤奋的刺猬采纳,获得10
9秒前
万浩发布了新的文献求助10
10秒前
Akim应助乐观小蕊采纳,获得10
10秒前
风清扬发布了新的文献求助10
11秒前
seall完成签到,获得积分10
11秒前
11秒前
欢喜曼岚完成签到 ,获得积分10
11秒前
www发布了新的文献求助10
11秒前
无花果应助zxy采纳,获得30
11秒前
11秒前
此晴可待发布了新的文献求助10
12秒前
12秒前
小羊耶啵完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721