亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic identification of active landslides over wide areas from time-series InSAR measurements using Faster RCNN

山崩 干涉合成孔径雷达 遥感 合成孔径雷达 流离失所(心理学) 人工智能 地形 鉴定(生物学) 变更检测 计算机科学 地质学 卷积神经网络 地图学 地理 地震学 心理学 植物 心理治疗师 生物
作者
Jiehua Cai,Lu Zhang,Jie Dong,Guo Jin-chen,Yian Wang,Mingsheng Liao
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:124: 103516-103516 被引量:6
标识
DOI:10.1016/j.jag.2023.103516
摘要

With the combined effects of climate change and anthropogenic disturbance, landslide hazards have progressively increased and emerged as one of the most significant natural threats to socio-economic safety and human life. Synthetic aperture radar interferometry (InSAR) can measure subtle ground displacement and thus has immense potential for detecting active landslides. However, the operational application of InSAR for landslide detection and inventory update in wide-area is still hindered by the high labor and time costs for visual interpretation and manual editing of InSAR results. Aiming at this problem, we developed a novel method using InSAR and convolutional neural network (CNN) for automated identification of active landslides over wide areas. It first performs InSAR analysis to produce a surface displacement velocity map of the target region and then employs an improved Faster RCNN based on attended ResNet-34 and Feature Pyramid Networks (FPN) to detect active landslides from the velocity map. Taking the Guizhou province in southwest China as a case study, we processed 1168 scenes of Sentinel-1 images and 473 scenes of PALSAR-2 images to derive the surface displacement and identified 1627 active landslides, including 326 manually labeled landslides and 1301 landslides automatically detected by Faster RCNN. The improved Faster RCNN achieved good recall, precision, F1 score, and average precision (AP) at 91.49%, 91.33%, 0.914, and 0.940, respectively. Further experiments indicated that the trained Faster RCNN showed satisfactory applicability and result accuracy for different test areas and various InSAR techniques. Therefore, the proposed approach has great potential applications for building inventories of active landslides over wide areas and regularly updating the records, which is crucial for preventing landslide disasters and mitigating losses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣喜的璎应助大胆的傲丝采纳,获得50
1秒前
Jasper应助彭医生采纳,获得10
1秒前
4秒前
张三发布了新的文献求助10
5秒前
7秒前
一墨完成签到,获得积分10
8秒前
Whisper完成签到 ,获得积分10
10秒前
彭医生发布了新的文献求助10
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
Ava应助张三采纳,获得10
19秒前
无奈书包完成签到,获得积分10
29秒前
36秒前
小蘑菇应助云天明采纳,获得10
38秒前
skier发布了新的文献求助10
42秒前
HYQ完成签到 ,获得积分10
55秒前
自由冰凡完成签到 ,获得积分10
59秒前
LLT完成签到,获得积分10
1分钟前
无花果应助彭医生采纳,获得10
1分钟前
1分钟前
ShengQ完成签到,获得积分10
1分钟前
彭医生发布了新的文献求助10
1分钟前
Foreverred完成签到,获得积分10
1分钟前
1分钟前
Foreverred发布了新的文献求助30
1分钟前
Lucas应助田柾国采纳,获得10
1分钟前
月光发布了新的文献求助10
1分钟前
ClarkClarkson完成签到,获得积分10
2分钟前
2分钟前
斯文败类应助月光采纳,获得10
2分钟前
2分钟前
婷宝完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
传奇3应助YYJ采纳,获得10
2分钟前
田柾国发布了新的文献求助10
2分钟前
努力搞科研完成签到,获得积分10
2分钟前
2分钟前
风趣的从梦完成签到,获得积分10
2分钟前
王者荣耀发布了新的文献求助10
2分钟前
Dreamer.发布了新的文献求助10
2分钟前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3213127
求助须知:如何正确求助?哪些是违规求助? 2861905
关于积分的说明 8131079
捐赠科研通 2527829
什么是DOI,文献DOI怎么找? 1361782
科研通“疑难数据库(出版商)”最低求助积分说明 643516
邀请新用户注册赠送积分活动 615869