Automatic identification of active landslides over wide areas from time-series InSAR measurements using Faster RCNN

山崩 干涉合成孔径雷达 遥感 合成孔径雷达 流离失所(心理学) 人工智能 地形 鉴定(生物学) 变更检测 计算机科学 地质学 卷积神经网络 地图学 地理 地震学 心理学 植物 心理治疗师 生物
作者
Jiehua Cai,Lu Zhang,Jie Dong,Guo Jin-chen,Yian Wang,Mingsheng Liao
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:124: 103516-103516 被引量:26
标识
DOI:10.1016/j.jag.2023.103516
摘要

With the combined effects of climate change and anthropogenic disturbance, landslide hazards have progressively increased and emerged as one of the most significant natural threats to socio-economic safety and human life. Synthetic aperture radar interferometry (InSAR) can measure subtle ground displacement and thus has immense potential for detecting active landslides. However, the operational application of InSAR for landslide detection and inventory update in wide-area is still hindered by the high labor and time costs for visual interpretation and manual editing of InSAR results. Aiming at this problem, we developed a novel method using InSAR and convolutional neural network (CNN) for automated identification of active landslides over wide areas. It first performs InSAR analysis to produce a surface displacement velocity map of the target region and then employs an improved Faster RCNN based on attended ResNet-34 and Feature Pyramid Networks (FPN) to detect active landslides from the velocity map. Taking the Guizhou province in southwest China as a case study, we processed 1168 scenes of Sentinel-1 images and 473 scenes of PALSAR-2 images to derive the surface displacement and identified 1627 active landslides, including 326 manually labeled landslides and 1301 landslides automatically detected by Faster RCNN. The improved Faster RCNN achieved good recall, precision, F1 score, and average precision (AP) at 91.49%, 91.33%, 0.914, and 0.940, respectively. Further experiments indicated that the trained Faster RCNN showed satisfactory applicability and result accuracy for different test areas and various InSAR techniques. Therefore, the proposed approach has great potential applications for building inventories of active landslides over wide areas and regularly updating the records, which is crucial for preventing landslide disasters and mitigating losses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柒景景完成签到,获得积分10
刚刚
1秒前
时钟完成签到,获得积分20
1秒前
TEDDY发布了新的文献求助10
1秒前
heye完成签到,获得积分20
1秒前
鱼鱼鱼完成签到,获得积分10
1秒前
憨憨发布了新的文献求助10
1秒前
Mimi发布了新的文献求助10
1秒前
2秒前
核桃发布了新的文献求助10
2秒前
3秒前
3秒前
饲养员发布了新的文献求助10
3秒前
4秒前
4秒前
水水应助天蓝日月潭采纳,获得20
4秒前
今后应助Wangjj采纳,获得30
4秒前
luo完成签到,获得积分10
5秒前
莫咏怡发布了新的文献求助10
6秒前
乐乐应助Corn_Dog采纳,获得10
6秒前
鱼鱼鱼发布了新的文献求助10
6秒前
隐形曼青应助网上飞采纳,获得10
6秒前
6秒前
科研通AI6应助kjwu采纳,获得10
6秒前
GLZ6984发布了新的文献求助10
7秒前
sda发布了新的文献求助10
8秒前
laryc完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
Ksharp10完成签到,获得积分10
9秒前
大野发布了新的文献求助10
10秒前
10秒前
10秒前
sda完成签到,获得积分10
10秒前
明理如凡完成签到,获得积分10
11秒前
科研通AI6应助Double采纳,获得10
12秒前
pokexuejiao完成签到,获得积分10
12秒前
李雅欣发布了新的文献求助10
12秒前
完美世界应助分隔符采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728