已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic identification of active landslides over wide areas from time-series InSAR measurements using Faster RCNN

山崩 干涉合成孔径雷达 遥感 合成孔径雷达 流离失所(心理学) 人工智能 地形 鉴定(生物学) 变更检测 计算机科学 地质学 卷积神经网络 地图学 地理 地震学 心理学 植物 心理治疗师 生物
作者
Jiehua Cai,Lu Zhang,Jie Dong,Guo Jin-chen,Yian Wang,Mingsheng Liao
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:124: 103516-103516 被引量:26
标识
DOI:10.1016/j.jag.2023.103516
摘要

With the combined effects of climate change and anthropogenic disturbance, landslide hazards have progressively increased and emerged as one of the most significant natural threats to socio-economic safety and human life. Synthetic aperture radar interferometry (InSAR) can measure subtle ground displacement and thus has immense potential for detecting active landslides. However, the operational application of InSAR for landslide detection and inventory update in wide-area is still hindered by the high labor and time costs for visual interpretation and manual editing of InSAR results. Aiming at this problem, we developed a novel method using InSAR and convolutional neural network (CNN) for automated identification of active landslides over wide areas. It first performs InSAR analysis to produce a surface displacement velocity map of the target region and then employs an improved Faster RCNN based on attended ResNet-34 and Feature Pyramid Networks (FPN) to detect active landslides from the velocity map. Taking the Guizhou province in southwest China as a case study, we processed 1168 scenes of Sentinel-1 images and 473 scenes of PALSAR-2 images to derive the surface displacement and identified 1627 active landslides, including 326 manually labeled landslides and 1301 landslides automatically detected by Faster RCNN. The improved Faster RCNN achieved good recall, precision, F1 score, and average precision (AP) at 91.49%, 91.33%, 0.914, and 0.940, respectively. Further experiments indicated that the trained Faster RCNN showed satisfactory applicability and result accuracy for different test areas and various InSAR techniques. Therefore, the proposed approach has great potential applications for building inventories of active landslides over wide areas and regularly updating the records, which is crucial for preventing landslide disasters and mitigating losses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助nikki采纳,获得20
1秒前
4秒前
曾经如是完成签到,获得积分10
4秒前
jimmy完成签到,获得积分10
4秒前
6秒前
李梦如完成签到,获得积分20
6秒前
8秒前
舒适的一凤完成签到 ,获得积分10
8秒前
Orange应助何何何何何采纳,获得10
9秒前
9秒前
9秒前
希望天下0贩的0应助诺一44采纳,获得10
9秒前
9秒前
11秒前
jimmy发布了新的文献求助10
12秒前
陈梅红完成签到 ,获得积分10
13秒前
momo123完成签到 ,获得积分10
13秒前
14秒前
梨小7完成签到,获得积分10
15秒前
赘婿应助早晚炸了学校采纳,获得10
16秒前
16秒前
17秒前
张张完成签到,获得积分10
18秒前
Adzuki0812发布了新的文献求助30
19秒前
言论完成签到,获得积分10
21秒前
22秒前
23秒前
爱笑小笼包完成签到,获得积分10
23秒前
GaoChenxi完成签到 ,获得积分10
24秒前
李健的小迷弟应助张之静采纳,获得10
25秒前
FashionBoy应助吉他平方采纳,获得10
26秒前
26秒前
27秒前
CrazyLion完成签到,获得积分10
28秒前
科目三应助李梦如采纳,获得10
28秒前
米饭多加水完成签到,获得积分10
28秒前
29秒前
30秒前
nikki完成签到,获得积分10
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934509
求助须知:如何正确求助?哪些是违规求助? 4202404
关于积分的说明 13057258
捐赠科研通 3976729
什么是DOI,文献DOI怎么找? 2179167
邀请新用户注册赠送积分活动 1195395
关于科研通互助平台的介绍 1106744