Automatic identification of active landslides over wide areas from time-series InSAR measurements using Faster RCNN

山崩 干涉合成孔径雷达 遥感 合成孔径雷达 流离失所(心理学) 人工智能 地形 鉴定(生物学) 变更检测 计算机科学 地质学 卷积神经网络 地图学 地理 地震学 心理学 植物 心理治疗师 生物
作者
Jiehua Cai,Lu Zhang,Jie Dong,Guo Jin-chen,Yian Wang,Mingsheng Liao
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:124: 103516-103516 被引量:26
标识
DOI:10.1016/j.jag.2023.103516
摘要

With the combined effects of climate change and anthropogenic disturbance, landslide hazards have progressively increased and emerged as one of the most significant natural threats to socio-economic safety and human life. Synthetic aperture radar interferometry (InSAR) can measure subtle ground displacement and thus has immense potential for detecting active landslides. However, the operational application of InSAR for landslide detection and inventory update in wide-area is still hindered by the high labor and time costs for visual interpretation and manual editing of InSAR results. Aiming at this problem, we developed a novel method using InSAR and convolutional neural network (CNN) for automated identification of active landslides over wide areas. It first performs InSAR analysis to produce a surface displacement velocity map of the target region and then employs an improved Faster RCNN based on attended ResNet-34 and Feature Pyramid Networks (FPN) to detect active landslides from the velocity map. Taking the Guizhou province in southwest China as a case study, we processed 1168 scenes of Sentinel-1 images and 473 scenes of PALSAR-2 images to derive the surface displacement and identified 1627 active landslides, including 326 manually labeled landslides and 1301 landslides automatically detected by Faster RCNN. The improved Faster RCNN achieved good recall, precision, F1 score, and average precision (AP) at 91.49%, 91.33%, 0.914, and 0.940, respectively. Further experiments indicated that the trained Faster RCNN showed satisfactory applicability and result accuracy for different test areas and various InSAR techniques. Therefore, the proposed approach has great potential applications for building inventories of active landslides over wide areas and regularly updating the records, which is crucial for preventing landslide disasters and mitigating losses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dtcao完成签到,获得积分20
刚刚
刚刚
阿西吧完成签到 ,获得积分10
刚刚
灰灰发布了新的文献求助10
1秒前
冷傲小小完成签到,获得积分10
1秒前
Adler完成签到,获得积分10
1秒前
1秒前
1秒前
专注的谷蓝完成签到,获得积分10
2秒前
深呼吸发布了新的文献求助10
2秒前
shanlu完成签到,获得积分10
2秒前
Orange应助繁星与北斗采纳,获得10
3秒前
3秒前
黄耀完成签到,获得积分10
3秒前
3秒前
abc1122完成签到,获得积分10
4秒前
wyh发布了新的文献求助10
4秒前
劣根完成签到,获得积分10
4秒前
何相逢完成签到,获得积分0
4秒前
LEE123完成签到,获得积分10
4秒前
感性的剑愁完成签到,获得积分10
5秒前
凉凉应助dtcao采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
卡卡西发布了新的文献求助10
5秒前
5秒前
长风与海浪完成签到 ,获得积分10
6秒前
MAOJCFK发布了新的文献求助10
7秒前
7秒前
faiting完成签到,获得积分10
7秒前
勤奋的天亦完成签到,获得积分10
7秒前
kiyo_v完成签到,获得积分10
7秒前
邓代容发布了新的文献求助10
8秒前
无私的芹应助yuelsy0117采纳,获得10
8秒前
ZHYChen完成签到,获得积分10
8秒前
huk发布了新的文献求助10
8秒前
ZJJ静完成签到,获得积分10
9秒前
董竹君完成签到,获得积分10
9秒前
俭朴的天曼完成签到,获得积分10
9秒前
Lucas应助顺心的翠丝采纳,获得10
10秒前
李田田完成签到,获得积分20
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015859
求助须知:如何正确求助?哪些是违规求助? 3555835
关于积分的说明 11318981
捐赠科研通 3288954
什么是DOI,文献DOI怎么找? 1812355
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027