Cross-Subject EEG-Based Emotion Recognition via Semisupervised Multisource Joint Distribution Adaptation

计算机科学 水准点(测量) 人工智能 模式识别(心理学) 适应(眼睛) 主题(文档) 接头(建筑物) 脑电图 特征(语言学) 语音识别 班级(哲学) 联合概率分布 机器学习 数学 统计 工程类 心理学 神经科学 建筑工程 图书馆学 地理 哲学 精神科 语言学 大地测量学
作者
Magdiel Jiménez-Guarneros,Gibrán Fuentes-Pineda
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:7
标识
DOI:10.1109/tim.2023.3302938
摘要

Most emotion recognition systems still present limited applicability to new users due to the inter-subject variability of electroencephalography (EEG) signals. Although domain adaptation methods have been adopted to tackle this problem, most methodologies deal with unlabeled data from a target subject. However, a few labeled samples from a target subject could also be included to boost cross-subject emotion recognition. In this paper, we present a semi-supervised domain adaptation framework to align the joint distributions of subjects, assuming that fine-grained structures must be aligned to perform a greater knowledge transfer. To achieve this, the proposed framework performs a multi-source alignment of features at subject level, while predictions are aligned over the global feature space. To support joint distribution alignment, inter-class separation and consistent predictions are ensured on the target subject. We perform experiments using two public benchmark datasets, SEED and SEED-IV, with two different sampling strategies to incorporate a few labeled samples from a target subject. Our proposal achieves an average accuracy of 93.55% and 87.96% on SEED and SEED-IV, using three labeled target samples of each class. Moreover, we obtained an average accuracy of 91.79% and 85.45% on SEED and SEED-IV by incorporating 10 labeled samples from the first EEG trial of each class.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
moufei发布了新的文献求助50
5秒前
ybheart完成签到,获得积分0
5秒前
子悦完成签到,获得积分10
6秒前
一颗橙子发布了新的文献求助10
13秒前
诸葛带你做分析_yorfir完成签到,获得积分0
16秒前
18秒前
彭于晏应助yw采纳,获得10
22秒前
22秒前
27秒前
27秒前
27秒前
27秒前
27秒前
27秒前
27秒前
27秒前
27秒前
Cooper应助科研通管家采纳,获得10
29秒前
蓝天应助科研通管家采纳,获得10
29秒前
慕青应助科研通管家采纳,获得10
29秒前
lizishu应助科研通管家采纳,获得10
29秒前
29秒前
英俊的铭应助科研通管家采纳,获得30
29秒前
29秒前
29秒前
29秒前
29秒前
爸爸完成签到,获得积分10
32秒前
33秒前
35秒前
yw发布了新的文献求助10
37秒前
小施发布了新的文献求助10
52秒前
清蒸可达鸭完成签到,获得积分10
55秒前
1分钟前
小李完成签到,获得积分10
1分钟前
1分钟前
Ava应助龙骑士25采纳,获得10
1分钟前
朱荧荧发布了新的文献求助10
1分钟前
PetrichorF完成签到 ,获得积分10
1分钟前
像风一样自由完成签到 ,获得积分10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5852235
求助须知:如何正确求助?哪些是违规求助? 6277178
关于积分的说明 15627824
捐赠科研通 4968117
什么是DOI,文献DOI怎么找? 2678906
邀请新用户注册赠送积分活动 1623170
关于科研通互助平台的介绍 1579534