Dynamically Shifting Multimodal Representations via Hybrid-Modal Attention for Multimodal Sentiment Analysis

计算机科学 模态(人机交互) 人工智能 模式 代表(政治) 自然语言处理 过程(计算) 生成语法 情绪分析 变压器 机器学习 社会科学 物理 量子力学 电压 社会学 政治 政治学 法学 操作系统
作者
Ronghao Lin,Haifeng Hu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 2740-2755 被引量:6
标识
DOI:10.1109/tmm.2023.3303711
摘要

In the field of multimodal machine learning, multimodal sentiment analysis task has been an active area of research. The predominant approaches focus on learning efficient multimodal representations containing intra- and inter-modality information. However, the heterogeneous nature of different modalities brings great challenges to multimodal representation learning. In this paper, we propose a multi-stage fusion framework to dynamically fine-tune multimodal representations via a hybrid-modal attention mechanism. Previous methods mostly only fine-tune the textual representation due to the success of large corpus pre-trained models and neglect the inconsistency problem of different modality spaces. Thus, we design a module called the Multimodal Shifting Gate (MSG) to fine-tune the three modalities by modeling inter-modality dynamics and shifting representations. We also adopt a module named Masked Bimodal Adjustment (MBA) on the textual modality to improve the inconsistency of parameter spaces and reduce the modality gap. In addition, we utilize syntactic-level and semantic-level textual features output from different layers of the Transformer model to sufficiently capture the intra-modality dynamics. Moreover, we construct a Shifting HuberLoss to robustly introduce the variation of the shifting value into the training process. Extensive experiments on the public datasets, including CMU-MOSI and CMU-MOSEI, demonstrate the efficacy of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gia发布了新的文献求助10
刚刚
苏梗完成签到 ,获得积分10
1秒前
SussClay完成签到,获得积分10
2秒前
妮妮发布了新的文献求助10
3秒前
万事胜意完成签到,获得积分20
3秒前
踏实志泽完成签到,获得积分10
4秒前
我是老大应助Babe1934采纳,获得10
4秒前
852应助王珏采纳,获得10
4秒前
我是老大应助半夏采纳,获得10
6秒前
6秒前
蕊子发布了新的文献求助30
6秒前
含蓄寄文关注了科研通微信公众号
6秒前
6秒前
6秒前
一杯月光完成签到,获得积分10
7秒前
长情的以云完成签到,获得积分10
8秒前
lm发布了新的文献求助10
9秒前
9秒前
束缚完成签到,获得积分10
10秒前
万事胜意发布了新的文献求助10
10秒前
kaige66完成签到,获得积分10
10秒前
biubiuu发布了新的文献求助10
11秒前
ei123完成签到,获得积分10
13秒前
14秒前
PDIF-CN2完成签到,获得积分10
14秒前
姜姜发布了新的文献求助10
14秒前
15秒前
满意的醉蝶完成签到,获得积分10
16秒前
卷aaaa完成签到,获得积分10
16秒前
赘婿应助昂口3采纳,获得10
17秒前
cj完成签到,获得积分10
17秒前
wentong完成签到,获得积分10
17秒前
原野完成签到,获得积分20
18秒前
biubiuu完成签到,获得积分10
18秒前
orixero应助凯睿采纳,获得10
18秒前
19秒前
19秒前
li完成签到,获得积分10
19秒前
21秒前
独特星月完成签到 ,获得积分10
21秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961269
求助须知:如何正确求助?哪些是违规求助? 3507536
关于积分的说明 11136688
捐赠科研通 3239991
什么是DOI,文献DOI怎么找? 1790625
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803199