Real-Time Velocity Vector Resolving of Artificial Lateral Line Array With Fishlike Motion Noise Suppression

噪音(视频) 运动学 人工智能 传感器融合 计算机科学 计算机视觉 声学 算法 物理 经典力学 图像(数学)
作者
Zhuoliang Zhang,Chao Zhou,Long Cheng,Xiaofei Wang,Min Tan
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:39 (6): 4350-4365 被引量:5
标识
DOI:10.1109/tro.2023.3297050
摘要

The past decade has seen the rapid development of the robotic fish in many aspects. However, the velocity measurement problem has not been fully addressed, which limits the autonomy of the robotic fish. To this end, an artificial lateral line (ALL) sensor, inspired by the sensory organs of fish, is developed in this article. By measuring the deformation of the sensitive element, the local flow field around the robotic fish is sensed. According to the characteristics of fishlike motions, a fairing structure is proposed to suppress the turbulence noise and yaw motion noise caused by fishlike oscillation of the tail. This structure ensure that the flow measured by the ALL sensor is closer to laminar flow under viscous effects. Furthermore, to measure the magnitude and direction of the robotic fish velocity, an ALL sensor array is assembled by mounting multiple sensors on the robot's surface to sense the flow field distribution. Next, a kinematic-based fusion method is proposed for the array system, which obtained the real-time velocity vector of the robotic fish by solving overdetermined motion equations. The proposed ALL array system is tested on a freely swimming robotic fish, and our method achieves a mean absolute error of 0.018 m/s, a linearity ( $R^{2}$ ) of 0.951, and a position tracking error of 0.085 m. Additionally, the fairing structure is found to improve the signal-to-noise ratio by 116%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
顾矜应助芒果西米露采纳,获得10
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助30
3秒前
llwxx完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
5秒前
Manqing发布了新的文献求助10
6秒前
娟不卷发布了新的文献求助10
6秒前
温暖靖柏应助tulips采纳,获得10
6秒前
7秒前
ding应助jiqiang采纳,获得10
7秒前
8秒前
1111发布了新的文献求助10
8秒前
8秒前
9秒前
开心千青发布了新的文献求助10
9秒前
10秒前
眠心发布了新的文献求助10
11秒前
菓小柒完成签到 ,获得积分10
12秒前
13秒前
小费完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
15秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
领导范儿应助迷人的德天采纳,获得10
17秒前
baobao完成签到,获得积分10
17秒前
义气青丝发布了新的文献求助10
19秒前
娟不卷完成签到,获得积分20
20秒前
科研小白完成签到,获得积分10
20秒前
oldblack发布了新的文献求助10
22秒前
月亮不睡我不睡完成签到,获得积分10
22秒前
22秒前
小蘑菇应助饼饼采纳,获得10
23秒前
xxxxxxxxx发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730659
求助须知:如何正确求助?哪些是违规求助? 5324531
关于积分的说明 15319452
捐赠科研通 4877021
什么是DOI,文献DOI怎么找? 2619917
邀请新用户注册赠送积分活动 1569204
关于科研通互助平台的介绍 1525787