User-Distribution-Aware Federated Learning for Efficient Communication and Fast Inference

计算机科学 推论 联合学习 人机交互 万维网 多媒体 分布式计算 人工智能
作者
Yangguang Cui,Zhixing Zhang,Nuo Wang,Liying Li,Chun-Wei Chang,Tongquan Wei
出处
期刊:IEEE Transactions on Computers [Institute of Electrical and Electronics Engineers]
卷期号:73 (4): 1004-1018 被引量:1
标识
DOI:10.1109/tc.2023.3327513
摘要

Deep learning as a service (DLaaS) that promotes deep learning-based applications by selling computing services from IT companies to end-users has introduced potential privacy leaks from users and cloud servers. Federated learning (FL) provides an emerging distributed paradigm that enables numerous users to collaboratively train deep-learning models while protecting user privacy and data security. However, many FL-related existing works only focus on improving communication bottlenecks due to frequent model parameter transmission, but ignore the performance degradation incurred by imbalanced user distribution and high inference latency due to the high complexity of deep-learning models in the emerging IoT-edge-cloud FL. In this paper, we propose an efficient user-distribution-aware hierarchical FL for communication-efficient training and fast inference in the IoT-edge-cloud DLaaS architecture. Specifically, we propose a user-distribution-aware hierarchical FL architecture to cope with the performance degradation owing to the imbalanced user distribution. The proposed architecture also features a lightweight deep neural network that adopts the designed lightweight fire modules as components and has a side branch for communication-efficient training and fast inference. Extensive experiments demonstrate that the proposed schemes significantly boost the accuracy by up to 67.12%, save 47.98% communication costs, and accelerate inference by up to 87.24 $\boldsymbol{\times}$ compared to benchmarking methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助张宇采纳,获得10
1秒前
斯文败类应助搞怪的易槐采纳,获得10
2秒前
2秒前
underunder完成签到,获得积分10
2秒前
ZSQ发布了新的文献求助10
3秒前
汉堡包应助李田田采纳,获得10
3秒前
3秒前
4秒前
4秒前
5秒前
5秒前
6秒前
zrw发布了新的文献求助10
7秒前
mh完成签到,获得积分10
7秒前
游01发布了新的文献求助10
7秒前
Okayoooooo发布了新的文献求助10
7秒前
彭于晏应助kitten采纳,获得10
8秒前
JamesPei应助Kismet采纳,获得10
8秒前
无奈寻冬完成签到 ,获得积分10
8秒前
9秒前
9秒前
大虫发布了新的文献求助10
9秒前
852应助小凉采纳,获得10
9秒前
SYLH应助ZSQ采纳,获得10
10秒前
DAYAN发布了新的文献求助10
11秒前
上官若男应助未晞采纳,获得10
12秒前
mh发布了新的文献求助10
12秒前
12秒前
13秒前
忘崽子小拳头完成签到,获得积分10
13秒前
阿金啊完成签到,获得积分10
13秒前
今后应助肾小球呵呵采纳,获得30
14秒前
bwx发布了新的文献求助200
14秒前
15秒前
15秒前
一鸣大人完成签到,获得积分10
16秒前
17秒前
东日羲雨完成签到,获得积分10
18秒前
无花果应助刻苦大侠采纳,获得10
18秒前
今后应助白敬亭采纳,获得10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952814
求助须知:如何正确求助?哪些是违规求助? 3498265
关于积分的说明 11091101
捐赠科研通 3228832
什么是DOI,文献DOI怎么找? 1785147
邀请新用户注册赠送积分活动 869189
科研通“疑难数据库(出版商)”最低求助积分说明 801367