User-Distribution-Aware Federated Learning for Efficient Communication and Fast Inference

计算机科学 推论 联合学习 人机交互 万维网 多媒体 分布式计算 人工智能
作者
Yangguang Cui,Zhixing Zhang,Nuo Wang,Liying Li,Chun-Wei Chang,Tongquan Wei
出处
期刊:IEEE Transactions on Computers [Institute of Electrical and Electronics Engineers]
卷期号:73 (4): 1004-1018 被引量:1
标识
DOI:10.1109/tc.2023.3327513
摘要

Deep learning as a service (DLaaS) that promotes deep learning-based applications by selling computing services from IT companies to end-users has introduced potential privacy leaks from users and cloud servers. Federated learning (FL) provides an emerging distributed paradigm that enables numerous users to collaboratively train deep-learning models while protecting user privacy and data security. However, many FL-related existing works only focus on improving communication bottlenecks due to frequent model parameter transmission, but ignore the performance degradation incurred by imbalanced user distribution and high inference latency due to the high complexity of deep-learning models in the emerging IoT-edge-cloud FL. In this paper, we propose an efficient user-distribution-aware hierarchical FL for communication-efficient training and fast inference in the IoT-edge-cloud DLaaS architecture. Specifically, we propose a user-distribution-aware hierarchical FL architecture to cope with the performance degradation owing to the imbalanced user distribution. The proposed architecture also features a lightweight deep neural network that adopts the designed lightweight fire modules as components and has a side branch for communication-efficient training and fast inference. Extensive experiments demonstrate that the proposed schemes significantly boost the accuracy by up to 67.12%, save 47.98% communication costs, and accelerate inference by up to 87.24 $\boldsymbol{\times}$ compared to benchmarking methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
务实寒天发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
不爱科研完成签到 ,获得积分10
3秒前
耍酷的白山完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
yaoyao发布了新的文献求助30
5秒前
6秒前
非少完成签到,获得积分10
6秒前
科目三应助不想说话采纳,获得10
6秒前
7秒前
lz发布了新的文献求助30
7秒前
徐安琪完成签到,获得积分10
9秒前
心心完成签到,获得积分10
9秒前
快乐小子发布了新的文献求助10
10秒前
橘子香完成签到,获得积分10
10秒前
乐乐乐乐乐乐应助fairy采纳,获得10
12秒前
Jerry完成签到,获得积分10
13秒前
永远有多远关注了科研通微信公众号
14秒前
yaoyao完成签到,获得积分10
18秒前
钱财实景完成签到,获得积分10
20秒前
goldfish完成签到,获得积分10
20秒前
20秒前
Elvira发布了新的文献求助10
24秒前
夜王发布了新的文献求助10
24秒前
goldfish发布了新的文献求助10
24秒前
24秒前
吲哚乙酸发布了新的文献求助10
24秒前
24秒前
打打应助科研通管家采纳,获得10
25秒前
我是老大应助科研通管家采纳,获得10
25秒前
25秒前
情怀应助科研通管家采纳,获得10
25秒前
学术通zzz应助科研通管家采纳,获得10
25秒前
25秒前
斯文败类应助科研通管家采纳,获得10
25秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3342901
求助须知:如何正确求助?哪些是违规求助? 2970015
关于积分的说明 8642260
捐赠科研通 2649937
什么是DOI,文献DOI怎么找? 1451003
科研通“疑难数据库(出版商)”最低求助积分说明 672062
邀请新用户注册赠送积分活动 661374