已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Probabilistic Forecasting of Bus Travel Time with a Bayesian Gaussian Mixture Model

计算机科学 概率逻辑 马尔科夫蒙特卡洛 车头时距 贝叶斯概率 混合模型 马尔可夫链 调度(生产过程) 模拟 数学优化 人工智能 数学 机器学习
作者
Xiaoxu Chen,Zhanhong Cheng,Jian Gang Jin,Martin Trépanier,Lijun Sun
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
被引量:6
标识
DOI:10.1287/trsc.2022.0214
摘要

Accurate forecasting of bus travel time and its uncertainty is critical to service quality and operation of transit systems: it can help passengers make informed decisions on departure time, route choice, and even transport mode choice, and it also support transit operators on tasks such as crew/vehicle scheduling and timetabling. However, most existing approaches in bus travel time forecasting are based on deterministic models that provide only point estimation. To this end, we develop in this paper a Bayesian probabilistic model for forecasting bus travel time and estimated time of arrival (ETA). To characterize the strong dependencies/interactions between consecutive buses, we concatenate the link travel time vectors and the headway vector from a pair of two adjacent buses as a new augmented variable and model it with a mixture of constrained multivariate Gaussian distributions. This approach can naturally capture the interactions between adjacent buses (e.g., correlated speed and smooth variation of headway), handle missing values in data, and depict the multimodality in bus travel time distributions. Next, we assume different periods in a day share the same set of Gaussian components, and we use time-varying mixing coefficients to characterize the systematic temporal variations in bus operation. For model inference, we develop an efficient Markov chain Monte Carlo (MCMC) algorithm to obtain the posterior distributions of model parameters and make probabilistic forecasting. We test the proposed model using the data from two bus lines in Guangzhou, China. Results show that our approach significantly outperforms baseline models that overlook bus-to-bus interactions, in terms of both predictive means and distributions. Besides forecasting, the parameters of the proposed model contain rich information for understanding/improving the bus service, for example, analyzing link travel time and headway correlation using covariance matrices and understanding time-varying patterns of bus fleet operation from the mixing coefficients. Funding: This research is supported in part by the Fonds de Recherche du Quebec-Societe et Culture (FRQSC) under the NSFC-FRQSC Research Program on Smart Cities and Big Data, the Canadian Statistical Sciences Institute (CANSSI) Collaborative Research Teams grants, and the Natural Sciences and Engineering Research Council (NSERC) of Canada. X. Chen acknowledges funding support from the China Scholarship Council (CSC). Supplemental Material: The e-companion is available at https://doi.org/10.1287/trsc.2022.0214 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nater1ver完成签到,获得积分10
刚刚
xlh完成签到 ,获得积分10
1秒前
坚定寻冬发布了新的文献求助10
2秒前
安静的嘚嘚完成签到 ,获得积分10
3秒前
qiang344完成签到 ,获得积分10
3秒前
魔音甜菜完成签到 ,获得积分10
3秒前
楠楠2001完成签到 ,获得积分10
3秒前
充电宝应助多年以后采纳,获得10
3秒前
766465完成签到 ,获得积分0
4秒前
无花果应助直觉采纳,获得10
5秒前
不知道取啥名完成签到 ,获得积分10
5秒前
andrele发布了新的文献求助10
5秒前
Ren完成签到 ,获得积分10
5秒前
shuang完成签到 ,获得积分10
6秒前
王某人完成签到 ,获得积分10
6秒前
阿姨洗铁路完成签到 ,获得积分10
7秒前
7秒前
stuuuuuuuuuuudy完成签到 ,获得积分10
7秒前
勤劳寒烟完成签到,获得积分10
8秒前
wsb76完成签到 ,获得积分10
8秒前
陶醉的烤鸡完成签到 ,获得积分10
8秒前
麦子完成签到 ,获得积分10
8秒前
多年以后完成签到,获得积分10
8秒前
numagok完成签到,获得积分10
9秒前
木子李发布了新的文献求助10
9秒前
迷路的台灯完成签到 ,获得积分10
11秒前
动人的向松完成签到 ,获得积分10
11秒前
钱小豪完成签到,获得积分20
11秒前
️语完成签到,获得积分10
12秒前
多年以后发布了新的文献求助10
12秒前
化工渣渣完成签到,获得积分10
13秒前
马桶盖盖子完成签到 ,获得积分10
14秒前
牛马自己push完成签到 ,获得积分10
15秒前
EED完成签到 ,获得积分10
15秒前
遇上就这样吧完成签到,获得积分0
16秒前
wei完成签到,获得积分20
16秒前
Nick完成签到 ,获得积分10
17秒前
kaiqiang完成签到,获得积分0
17秒前
852应助钱小豪采纳,获得10
17秒前
两个榴莲完成签到,获得积分0
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989949
求助须知:如何正确求助?哪些是违规求助? 3532017
关于积分的说明 11255865
捐赠科研通 3270829
什么是DOI,文献DOI怎么找? 1805053
邀请新用户注册赠送积分活动 882233
科研通“疑难数据库(出版商)”最低求助积分说明 809216

今日热心研友

fanyueyue
4
热心市民小红花
10
酷炫的一笑
1
momo
1
孙燕
1
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10