Probabilistic Forecasting of Bus Travel Time with a Bayesian Gaussian Mixture Model

计算机科学 概率逻辑 马尔科夫蒙特卡洛 车头时距 贝叶斯概率 混合模型 马尔可夫链 调度(生产过程) 模拟 数学优化 人工智能 数学 机器学习
作者
Xiaoxu Chen,Zhanhong Cheng,Jian Gang Jin,Martin Trépanier,Lijun Sun
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
被引量:6
标识
DOI:10.1287/trsc.2022.0214
摘要

Accurate forecasting of bus travel time and its uncertainty is critical to service quality and operation of transit systems: it can help passengers make informed decisions on departure time, route choice, and even transport mode choice, and it also support transit operators on tasks such as crew/vehicle scheduling and timetabling. However, most existing approaches in bus travel time forecasting are based on deterministic models that provide only point estimation. To this end, we develop in this paper a Bayesian probabilistic model for forecasting bus travel time and estimated time of arrival (ETA). To characterize the strong dependencies/interactions between consecutive buses, we concatenate the link travel time vectors and the headway vector from a pair of two adjacent buses as a new augmented variable and model it with a mixture of constrained multivariate Gaussian distributions. This approach can naturally capture the interactions between adjacent buses (e.g., correlated speed and smooth variation of headway), handle missing values in data, and depict the multimodality in bus travel time distributions. Next, we assume different periods in a day share the same set of Gaussian components, and we use time-varying mixing coefficients to characterize the systematic temporal variations in bus operation. For model inference, we develop an efficient Markov chain Monte Carlo (MCMC) algorithm to obtain the posterior distributions of model parameters and make probabilistic forecasting. We test the proposed model using the data from two bus lines in Guangzhou, China. Results show that our approach significantly outperforms baseline models that overlook bus-to-bus interactions, in terms of both predictive means and distributions. Besides forecasting, the parameters of the proposed model contain rich information for understanding/improving the bus service, for example, analyzing link travel time and headway correlation using covariance matrices and understanding time-varying patterns of bus fleet operation from the mixing coefficients. Funding: This research is supported in part by the Fonds de Recherche du Quebec-Societe et Culture (FRQSC) under the NSFC-FRQSC Research Program on Smart Cities and Big Data, the Canadian Statistical Sciences Institute (CANSSI) Collaborative Research Teams grants, and the Natural Sciences and Engineering Research Council (NSERC) of Canada. X. Chen acknowledges funding support from the China Scholarship Council (CSC). Supplemental Material: The e-companion is available at https://doi.org/10.1287/trsc.2022.0214 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浅尝离白应助如意歌曲采纳,获得30
刚刚
刚刚
changfox完成签到,获得积分10
1秒前
NexusExplorer应助夜之枫采纳,获得10
2秒前
Timon发布了新的文献求助10
3秒前
崔崔发布了新的文献求助10
4秒前
4秒前
4秒前
哈哈哈完成签到,获得积分10
6秒前
赘婿应助壮观以松采纳,获得10
8秒前
ZW完成签到,获得积分10
9秒前
牟聪明完成签到,获得积分20
9秒前
9秒前
linlang发布了新的文献求助10
10秒前
11秒前
喜悦成威发布了新的文献求助10
12秒前
13秒前
徐一羊完成签到 ,获得积分10
13秒前
13秒前
实验顺利完成签到,获得积分10
14秒前
美满疾应助pugongying采纳,获得10
16秒前
善良的西瓜完成签到 ,获得积分10
16秒前
只A不B应助细心怜寒采纳,获得10
17秒前
luoshi应助朴实凝雁采纳,获得10
17秒前
夜之枫发布了新的文献求助10
17秒前
守望者1123完成签到,获得积分10
18秒前
小~杰完成签到,获得积分10
18秒前
19秒前
充电宝应助linlang采纳,获得10
20秒前
小蘑菇应助qqqq采纳,获得10
22秒前
23秒前
23秒前
李健的小迷弟应助QI采纳,获得10
23秒前
科研通AI2S应助夜之枫采纳,获得10
24秒前
明明发布了新的文献求助10
26秒前
斯文寄松发布了新的文献求助10
26秒前
27秒前
全世界最可爱的122完成签到,获得积分10
27秒前
29秒前
周杨烊完成签到,获得积分10
29秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340299
求助须知:如何正确求助?哪些是违规求助? 2968347
关于积分的说明 8633293
捐赠科研通 2647882
什么是DOI,文献DOI怎么找? 1449877
科研通“疑难数据库(出版商)”最低求助积分说明 671549
邀请新用户注册赠送积分活动 660574