沟槽(工程)
执行机构
领域(数学)
材料科学
机械工程
制造工程
纳米技术
工程类
电气工程
数学
纯数学
作者
Haonan Sun,Chengqian Zhang,Chengfeng Pan,Zhezai Hu,Yujie Huang,Daofan Tang,Jun Xie,Huangzhe Dai,Hao Hu,Tiefeng Li,Peng Zhao
摘要
Magnetic flexible actuators have attracted widespread attention due to their small size, adaptability, and wireless control capability. The manufacturing method of these actuators plays a crucial role in their functionality. Vat photopolymerization (VPP) offers the ability to manufacture precise structures and the capability of selective area curing. Based on these characterizations, we propose a magnetic field-assisted manufacturing method based on VPP to produce magnetic flexible actuators with 3D architecture in both geometry structure and magnetization arrangements, with accuracy of 200 μm. In addition, we construct groove structure to enhance the actuators' deformation, which is confirmed by both theoretical and experimental analyses, and successfully reduce the content requirement of magnetic particles. Flexible actuators with a low magnetic particle content (10 wt%) can be fabricated and fulfill intended functionality. We demonstrate the effectiveness of our method by manufacturing multi-arm grippers, showcasing their transportation capabilities. Moreover, we construct a 2-DOF joint for a crawling robot, significantly improving its motion performance and increasing the average step length to 6.8 times. Finally, we design and manufacture a magnetic diaphragm with complex structure and 3D magnetization arrangements, which is applied to a micro pump, demonstrating its pumping process with a rate of about 3.6 mL/min. These results highlight the potential of the magnetic field-assisted manufacturing method in designing complex structures and magnetization arrangements of flexible actuators, expanding their functional boundaries.
科研通智能强力驱动
Strongly Powered by AbleSci AI